A std::promise
создается как конечная точка для пары обещание / будущее, а другая std::future
(созданная из std :: обещание с использованием get_future()
метода) является другой конечной точкой. Это простой метод, позволяющий синхронизировать два потока, поскольку один поток передает данные другому потоку через сообщение.
Вы можете думать об этом как о том, что один поток создает обещание для предоставления данных, а другой поток собирает обещание в будущем. Этот механизм может быть использован только один раз.
Механизм обещания / будущего - это только одно направление: от потока, который использует set_value()
метод a, std::promise
к потоку, который использует get()
a std::future
для получения данных. Исключение генерируется, если get()
метод будущего вызывается более одного раза.
Если поток с std::promise
не использовал set_value()
для выполнения своего обещания, то когда второй поток вызывает get()
его std::future
для сбора обещания, второй поток перейдет в состояние ожидания, пока обещание не будет выполнено первым потоком, std::promise
когда он использует set_value()
метод отправить данные.
Благодаря предложенным сопрограммам Технической спецификации N4663 Языки программирования - расширения C ++ для сопрограмм и поддержке компилятора Visual Studio 2017 C ++ co_await
также возможно использовать std::future
и std::async
писать функциональные возможности сопрограмм. См. Обсуждение и пример в https://stackoverflow.com/a/50753040/1466970, в котором есть один раздел, в котором обсуждается использование std::future
with co_await
.
В следующем примере кода, простом консольном приложении Visual Studio 2013 для Windows, показано использование нескольких классов / шаблонов параллелизма C ++ 11 и других функций. Это иллюстрирует использование для обещания / будущего, которое работает хорошо, автономные потоки, которые будут выполнять некоторую задачу и остановку, и использование, где требуется более синхронное поведение и из-за необходимости множественных уведомлений, пара обещание / будущее не работает.
Одно замечание об этом примере - задержки, добавленные в разных местах. Эти задержки были добавлены только для того, чтобы гарантировать, что различные сообщения, распечатанные на консоли std::cout
, будут четкими и что текст из нескольких потоков не будет смешиваться.
Первая часть main()
- создание трех дополнительных потоков и использование std::promise
и std::future
для отправки данных между потоками. Интересным моментом является то, что основной поток запускает поток T2, который будет ожидать данные из основного потока, что-то делать, а затем отправлять данные в третий поток T3, который затем что-то будет делать и отправлять данные обратно в Основная тема.
Вторая часть main()
создает два потока и набор очередей, чтобы разрешить несколько сообщений из основного потока каждому из двух созданных потоков. Мы не можем использовать std::promise
и std::future
для этого, потому что обещание / будущий дуэт являются одним выстрелом и не могут быть использованы повторно.
Источник для класса Sync_queue
взят из Страуструпа "Язык программирования C ++: 4-е издание".
// cpp_threads.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include <iostream>
#include <thread> // std::thread is defined here
#include <future> // std::future and std::promise defined here
#include <list> // std::list which we use to build a message queue on.
static std::atomic<int> kount(1); // this variable is used to provide an identifier for each thread started.
//------------------------------------------------
// create a simple queue to let us send notifications to some of our threads.
// a future and promise are one shot type of notifications.
// we use Sync_queue<> to have a queue between a producer thread and a consumer thread.
// this code taken from chapter 42 section 42.3.4
// The C++ Programming Language, 4th Edition by Bjarne Stroustrup
// copyright 2014 by Pearson Education, Inc.
template<typename Ttype>
class Sync_queue {
public:
void put(const Ttype &val);
void get(Ttype &val);
private:
std::mutex mtx; // mutex used to synchronize queue access
std::condition_variable cond; // used for notifications when things are added to queue
std::list <Ttype> q; // list that is used as a message queue
};
template<typename Ttype>
void Sync_queue<Ttype>::put(const Ttype &val) {
std::lock_guard <std::mutex> lck(mtx);
q.push_back(val);
cond.notify_one();
}
template<typename Ttype>
void Sync_queue<Ttype>::get(Ttype &val) {
std::unique_lock<std::mutex> lck(mtx);
cond.wait(lck, [this]{return !q.empty(); });
val = q.front();
q.pop_front();
}
//------------------------------------------------
// thread function that starts up and gets its identifier and then
// waits for a promise to be filled by some other thread.
void func(std::promise<int> &jj) {
int myId = std::atomic_fetch_add(&kount, 1); // get my identifier
std::future<int> intFuture(jj.get_future());
auto ll = intFuture.get(); // wait for the promise attached to the future
std::cout << " func " << myId << " future " << ll << std::endl;
}
// function takes a promise from one thread and creates a value to provide as a promise to another thread.
void func2(std::promise<int> &jj, std::promise<int>&pp) {
int myId = std::atomic_fetch_add(&kount, 1); // get my identifier
std::future<int> intFuture(jj.get_future());
auto ll = intFuture.get(); // wait for the promise attached to the future
auto promiseValue = ll * 100; // create the value to provide as promised to the next thread in the chain
pp.set_value(promiseValue);
std::cout << " func2 " << myId << " promised " << promiseValue << " ll was " << ll << std::endl;
}
// thread function that starts up and waits for a series of notifications for work to do.
void func3(Sync_queue<int> &q, int iBegin, int iEnd, int *pInts) {
int myId = std::atomic_fetch_add(&kount, 1);
int ll;
q.get(ll); // wait on a notification and when we get it, processes it.
while (ll > 0) {
std::cout << " func3 " << myId << " start loop base " << ll << " " << iBegin << " to " << iEnd << std::endl;
for (int i = iBegin; i < iEnd; i++) {
pInts[i] = ll + i;
}
q.get(ll); // we finished this job so now wait for the next one.
}
}
int _tmain(int argc, _TCHAR* argv[])
{
std::chrono::milliseconds myDur(1000);
// create our various promise and future objects which we are going to use to synchronise our threads
// create our three threads which are going to do some simple things.
std::cout << "MAIN #1 - create our threads." << std::endl;
// thread T1 is going to wait on a promised int
std::promise<int> intPromiseT1;
std::thread t1(func, std::ref(intPromiseT1));
// thread T2 is going to wait on a promised int and then provide a promised int to thread T3
std::promise<int> intPromiseT2;
std::promise<int> intPromiseT3;
std::thread t2(func2, std::ref(intPromiseT2), std::ref(intPromiseT3));
// thread T3 is going to wait on a promised int and then provide a promised int to thread Main
std::promise<int> intPromiseMain;
std::thread t3(func2, std::ref(intPromiseT3), std::ref(intPromiseMain));
std::this_thread::sleep_for(myDur);
std::cout << "MAIN #2 - provide the value for promise #1" << std::endl;
intPromiseT1.set_value(22);
std::this_thread::sleep_for(myDur);
std::cout << "MAIN #2.2 - provide the value for promise #2" << std::endl;
std::this_thread::sleep_for(myDur);
intPromiseT2.set_value(1001);
std::this_thread::sleep_for(myDur);
std::cout << "MAIN #2.4 - set_value 1001 completed." << std::endl;
std::future<int> intFutureMain(intPromiseMain.get_future());
auto t3Promised = intFutureMain.get();
std::cout << "MAIN #2.3 - intFutureMain.get() from T3. " << t3Promised << std::endl;
t1.join();
t2.join();
t3.join();
int iArray[100];
Sync_queue<int> q1; // notification queue for messages to thread t11
Sync_queue<int> q2; // notification queue for messages to thread t12
std::thread t11(func3, std::ref(q1), 0, 5, iArray); // start thread t11 with its queue and section of the array
std::this_thread::sleep_for(myDur);
std::thread t12(func3, std::ref(q2), 10, 15, iArray); // start thread t12 with its queue and section of the array
std::this_thread::sleep_for(myDur);
// send a series of jobs to our threads by sending notification to each thread's queue.
for (int i = 0; i < 5; i++) {
std::cout << "MAIN #11 Loop to do array " << i << std::endl;
std::this_thread::sleep_for(myDur); // sleep a moment for I/O to complete
q1.put(i + 100);
std::this_thread::sleep_for(myDur); // sleep a moment for I/O to complete
q2.put(i + 1000);
std::this_thread::sleep_for(myDur); // sleep a moment for I/O to complete
}
// close down the job threads so that we can quit.
q1.put(-1); // indicate we are done with agreed upon out of range data value
q2.put(-1); // indicate we are done with agreed upon out of range data value
t11.join();
t12.join();
return 0;
}
Это простое приложение создает следующий вывод.
MAIN #1 - create our threads.
MAIN #2 - provide the value for promise #1
func 1 future 22
MAIN #2.2 - provide the value for promise #2
func2 2 promised 100100 ll was 1001
func2 3 promised 10010000 ll was 100100
MAIN #2.4 - set_value 1001 completed.
MAIN #2.3 - intFutureMain.get() from T3. 10010000
MAIN #11 Loop to do array 0
func3 4 start loop base 100 0 to 5
func3 5 start loop base 1000 10 to 15
MAIN #11 Loop to do array 1
func3 4 start loop base 101 0 to 5
func3 5 start loop base 1001 10 to 15
MAIN #11 Loop to do array 2
func3 4 start loop base 102 0 to 5
func3 5 start loop base 1002 10 to 15
MAIN #11 Loop to do array 3
func3 4 start loop base 103 0 to 5
func3 5 start loop base 1003 10 to 15
MAIN #11 Loop to do array 4
func3 4 start loop base 104 0 to 5
func3 5 start loop base 1004 10 to 15