Google твой друг. С https://www.modmypi.com/blog/whats-the-difference-between-dc-servo-stepper-motors
Серво Моторс
Серводвигатели, как правило, представляют собой сборку из четырех элементов: двигатель постоянного тока, комплект редуктора, цепь управления и датчик положения (обычно потенциометр).
Положение серводвигателей может контролироваться более точно, чем положение стандартных двигателей постоянного тока, и они обычно имеют три провода (питание, заземление и управление). Постоянно подается питание на серводвигатели, причем цепь сервоуправления регулирует тягу для привода двигателя. Серводвигатели предназначены для более специфических задач, когда необходимо точно определить положение, например, управление рулем на лодке или перемещение роботизированной руки или ноги робота в пределах определенного диапазона.
Серводвигатели не вращаются свободно, как стандартный двигатель постоянного тока. Вместо этого угол поворота ограничен 180 градусами (или около того) назад и вперед. Серводвигатели получают управляющий сигнал, который представляет выходное положение и подает питание на двигатель постоянного тока, пока вал не повернется в правильное положение, определенное датчиком положения.
ШИМ используется для управляющего сигнала серводвигателей. Однако, в отличие от двигателей постоянного тока, длительность положительного импульса определяет положение, а не скорость, серво вала. Нейтральное значение импульса, зависящее от сервопривода (обычно около 1,5 мс), удерживает вал сервопривода в среднем положении. При увеличении этого значения импульса сервопривод поворачивается по часовой стрелке, а более короткий импульс поворачивает вал против часовой стрелки. Импульс сервоуправления обычно повторяется каждые 20 миллисекунд, по сути говоря, серво указывает, куда двигаться, даже если это означает, что он остается в том же положении.
Когда сервоприводу предписано двигаться, он переместится в положение и удержит это положение, даже если внешняя сила будет давить на него. Сервопривод будет сопротивляться выходу из этого положения, при этом максимальная сила сопротивления, которую сервопривод может оказать, является номинальным крутящим моментом этого сервопривода.
Степпер Моторс
Шаговый двигатель - это, по сути, серводвигатель, который использует другой метод моторизации. В тех случаях, когда в серводвигателе используется двигатель постоянного тока с непрерывным вращением и встроенная схема контроллера, в шаговых двигателях используются многочисленные зубчатые электромагниты, расположенные вокруг центральной шестерни для определения положения.
Для шаговых двигателей требуется внешняя схема управления или микроконтроллер (например, Raspberry Pi или Arduino) для индивидуального включения каждого электромагнита и вращения вала двигателя. Когда на электромагнит «А» подается питание, он притягивает зубья шестерни и выравнивает их, слегка смещая относительно следующего электромагнита «В». Когда «А» выключен, а «В» включен, редуктор слегка вращается, чтобы выровняться с «В», и так далее по кругу, при этом каждый электромагнит вокруг редуктора включается и выключается по очереди, чтобы создать вращение. Каждое вращение от одного электромагнита к следующему называется «шагом», и, таким образом, двигатель может поворачиваться на точные заранее определенные углы шага через полный поворот на 360 градусов.
Шаговые двигатели доступны в двух вариантах; униполярный или биполярный. Биполярные двигатели являются наиболее мощным типом шагового двигателя и обычно имеют четыре или восемь выводов. У них есть два набора электромагнитных катушек внутри, и шаг достигается путем изменения направления тока внутри этих катушек. У униполярных двигателей, которые можно определить по 5,6 или даже 8 проводам, также есть две катушки, но у каждого есть центральный отвод. Однополярные двигатели могут работать без изменения направления тока в катушках, что упрощает электронику. Однако, поскольку центральный отвод используется для подачи питания только на половину каждой катушки, в то время как они обычно имеют меньший крутящий момент, чем биполярный.
Конструкция шагового двигателя обеспечивает постоянный удерживающий момент без необходимости питания двигателя и, при условии, что двигатель используется в его пределах, ошибок позиционирования не возникает, поскольку шаговые двигатели имеют физически предварительно определенные станции.