С практической точки зрения, причина, по которой гармоники «появляются», заключается в том, что схемы линейной фильтрации (а также множество схем нелинейной фильтрации), предназначенные для обнаружения определенных частот, будут воспринимать определенные низкочастотные сигналы как интересующие их частоты. Чтобы понять почему, представьте себе большую пружину с очень тяжелым весом, которая прикреплена к рукоятке через довольно свободную пружину. Вытягивание за ручку не будет сильно перемещать тяжелый груз напрямую, но большая пружина и груз будут иметь определенную резонансную частоту, и если вы будете перемещать ручку назад и вперед на этой частоте, вы можете добавить энергию к большому весу и пружине. увеличивая амплитуду колебаний до тех пор, пока она не станет намного больше, чем можно было бы произвести «напрямую», потянув за свободную пружину.
Наиболее эффективный способ передачи энергии в большую пружину - это вытягивание плавного рисунка, соответствующего синусоиде - того же рисунка движения, что и у большой пружины. Другие модели движения будут работать, однако. Если перемещать ручку по другим схемам, часть энергии, которая поступает в узел с пружинным грузом во время частей цикла, будет отводиться во время других. В качестве простого примера, предположим, что человек просто заклинивает рукоятку до крайних концов хода со скоростью, соответствующей резонансной частоте (эквивалентной прямоугольной волне). Перемещение рукоятки от одного конца к другому так же, как вес достигает конца хода, потребует намного больше работы, чем ожидание того, чтобы вес сначала сдвинулся назад, но если в этот момент рукоять не переместится, пружина на ручке будет бороться с весом " Попытка вернуться в центр. Тем не менее, четкое перемещение ручки из одного крайнего положения в другое, тем не менее, будет работать.
Предположим, что весу требуется одна секунда, чтобы качаться слева направо, и еще одна секунда, чтобы качаться назад. Теперь рассмотрим, что случится, если один переместит ручку из одного крайнего движения в другое, которое раньше, но задержится на три секунды с каждой стороны вместо одной секунды. Каждый раз, когда кто-то перемещает рукоятку из одной крайности в другую, вес и пружина будут по существу иметь то же положение и скорость, что и две секунды ранее. Следовательно, к ним будет добавлено столько энергии, сколько было бы за две секунды до этого. С другой стороны, такое прибавление энергии будет происходить только на треть чаще, чем когда «задержка времени» составляла всего одну секунду. Таким образом, перемещение рукоятки назад и вперед с частотой 1/6 Гц добавит к весу в три раза больше энергии в минуту, чем при перемещении рукоятки назад и вперед с частотой 1/2 Гц. Подобное происходит, если перемещать рукоятку назад и вперед на 1/10 Гц, но, поскольку движения будут на 1/5 так же часто, как на 1/2 Гц, мощность будет 1/5.
Теперь предположим, что вместо того, чтобы время задержки было нечетным кратным, каждый делает его четным (например, две секунды). В этом сценарии положение веса и пружины для каждого движения слева направо будет таким же, как и его положение при следующем движении справа налево. Следовательно, если ручка добавляет энергию к пружине в первой, такая энергия будет по существу отменена последней. Следовательно, весна не будет двигаться.
Если вместо того, чтобы совершать экстремальные движения с рукояткой, ее перемещают более плавно, то при более низких частотах движения рукоятки может быть больше раз, когда кто-то борется с движением комбинации вес / пружина. Если перемещать рукоятку в форме синусоидальной волны, но на частоте, существенно отличающейся от резонансной частоты системы, энергия, передаваемая в систему при нажатии «правильного» пути, будет довольно хорошо уравновешена принимаемой энергией. выход из системы толкает «неправильный» путь. Другие модели движения, которые не так экстремальны, как прямоугольная волна, будут, по крайней мере, на некоторых частотах, передавать в систему больше энергии, чем вынимается.