Я пытался разработать модуль, который позволит мне изменять выбранные ответы подчиненного устройства на шине I2C. Вот исходная конфигурация шины (подтягивания и подключения питания не показаны для ясности:
На этой шине только 2 устройства, и это только 100 кГц. Контроллер MCU (ведущий I2C) и считыватель RFID-карт (ведомый I2C) NXP PN512. Я не могу изменить прошивку контроллера или изменить транзакции шины I2C. Хорошая часть заключается в том, что контроллер отправляет только 2 типа транзакций:
Master (Write Register) - <s><address+W><register number><data><p>
Master (Read Register) - <s><address+W><register number><p><s><address+R><data><p>
То, что я хочу сделать, это заменить выбранные байты данных во время чтения основного регистра моими собственными байтами. Я могу отправить регистрационные номера, которые MCU хочет прочитать, на мой компьютер через UART (921,6 КБод). Я могу обработать их в C / C ++ или Python там. Когда я получу номер регистра, значение которого необходимо заменить, я могу отправить фальшивый байт обратно на мое устройство, и он позаботится о его отправке обратно в контроллер, заменив исходный ответ карты.
Сначала я разделил шину I2C на две шины:
Я попробовал Arduino Nano и позже CPLD, используя растяжение часов. Аппаратный I2C ATmega328, обращенный к контроллеру MCU, не мог поддерживать, поскольку иногда последовательность запуска генерировалась раньше, чем через 5 мсек после предыдущего цикла остановки. Таким образом, время от времени AVR выполнял транзакцию чтения. CPLD мог справиться со скоростью остановки / запуска, оказалось, что в MCU отключено растяжение шины.
Мне пришла в голову мысль, что я могу «предсказать» чтение основного регистра, обнаружив запись одного байта, так как я уверен, что за ней следует чтение. Кажется, что во время следующей записи адреса цикла чтения у меня было достаточно времени, чтобы ввести байт от ведомого устройства. Это не совсем работает. Вначале операции с шиной казались нормальными (примерно первые 5 секунд), но затем контроллер прекратил все коммуникации на шине, как будто обнаружил, что он не напрямую говорит о считывании меток.
Устройство чтения карт также может генерировать прерывания для мастера. IRQ основаны на таймере или событии. Я связал проблему с задержкой, которую я изначально вводил в автобусе. Я мог ошибаться, но я придумал другой дизайн с «нулевой задержкой».
Идея состоит в том, что я могу только разорвать линию SDA и оставить линию SCL подключенной между ведущим и ведомым. Таким образом, я все еще могу заменить байты в строке данных в любом направлении. Проект оказался более сложным, так как я должен контролировать направление линии SDA на основе цикла шины. Вот код VHDL, который обрабатывает транзакции шины и отправляет шестнадцатеричные байты по UART на компьютер. Получение байтов с компьютера еще не реализовано:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity I2C_Sniffer is
port (
clk : in std_logic;
scl_master : in std_logic;
sda_master : inout std_logic;
sda_slave : inout std_logic;
tx : out std_logic
);
end entity I2C_Sniffer;
architecture arch of I2C_Sniffer is
signal clkDiv: std_logic_vector(7 downto 0) := (others => '0');
type I2C_STATE is (I2C_IDLE, I2C_MASTER_WRITE, I2C_SLAVE_ACK, I2C_MASTER_READ, I2C_MASTER_ACK);
signal i2cState: I2C_STATE := I2C_IDLE;
type I2C_BUS_DIR is (MASTER_TO_SLAVE, SLAVE_TO_MASTER);
signal i2cBusDir: I2C_BUS_DIR := MASTER_TO_SLAVE;
signal i2cRxData: std_logic_vector(7 downto 0);
signal i2cCntr: integer range 0 to 8 := 0;
signal i2cAddr: std_logic := '1';
signal i2cCmd: std_logic := '0';
signal scl_d: std_logic := '1';
signal scl: std_logic := '1';
signal sda_d: std_logic := '1';
signal sda: std_logic := '1';
--Strobes for SCL edges and Start/Stop bits
signal start_strobe : std_logic := '0';
signal stop_strobe : std_logic := '0';
signal scl_rising_strobe : std_logic := '0';
signal scl_falling_strobe : std_logic := '0';
type UART_STATE is (UART_IDLE, UART_START, UART_DATA, UART_STOP);
signal uartState: UART_STATE := UART_IDLE;
signal uartTxRdy: std_logic := '0';
signal uartTxData: std_logic_vector(7 downto 0);
signal uartCntr: integer range 0 to 8 := 0;
begin
CLK_DIV: process (clk)
begin
if rising_edge(clk) then
clkDiv <= std_logic_vector(unsigned(clkDiv) + 1);
end if;
end process;
I2C_STROBES: process (clk)
begin
if rising_edge(clk) then
--Pipelined SDA and SCL signals
scl_d <= scl_master;
scl <= scl_d;
scl_rising_strobe <= '0';
if scl = '0' and scl_d = '1' then
scl_rising_strobe <= '1';
end if;
scl_falling_strobe <= '0';
if scl = '1' and scl_d = '0' then
scl_falling_strobe <= '1';
end if;
if i2cBusDir = MASTER_TO_SLAVE then
sda_d <= sda_master;
sda <= sda_d;
else
sda_d <= sda_slave;
sda <= sda_d;
end if;
start_strobe <= '0';
if sda_d = '0' and sda = '1' and scl = '1' and scl_d = '1' then
start_strobe <= '1';
end if;
stop_strobe <= '0';
if sda_d = '1' and sda = '0' and scl = '1' and scl_d = '1' then
stop_strobe <= '1';
end if;
end if;
end process;
BUS_DIR: process(sda_master, sda_slave, i2cBusDir)
begin
if i2cBusDir = MASTER_TO_SLAVE then
sda_slave <= sda_master;
sda_master <= 'Z';
else
sda_master <= sda_slave;
sda_slave <= 'Z';
end if;
end process;
I2C: process(clk)
begin
if rising_edge(clk) then
uartTxRdy <= '0';
case i2cState is
when I2C_IDLE =>
i2cBusDir <= MASTER_TO_SLAVE;
if start_strobe = '1' then
i2cAddr <= '1';
i2cCntr <= 0;
i2cState <= I2C_MASTER_WRITE;
end if;
-- Master Write (Address/Data)
when I2C_MASTER_WRITE =>
i2cBusDir <= MASTER_TO_SLAVE;
if stop_strobe = '1' then
i2cState <= I2C_IDLE;
uartTxData <= "00001010";
uartTxRdy <= '1';
end if;
if scl_rising_strobe = '1' then
if i2cCntr <= 7 then
i2cRxData(7 - i2cCntr) <= sda;
i2cCntr <= i2cCntr + 1;
end if;
end if;
if i2cCntr = 4 then
case i2cRxData(7 downto 4) is
when "0000" => uartTxData <= "00110000"; --0
when "0001" => uartTxData <= "00110001"; --1
when "0010" => uartTxData <= "00110010"; --2
when "0011" => uartTxData <= "00110011"; --3
when "0100" => uartTxData <= "00110100"; --4
when "0101" => uartTxData <= "00110101"; --5
when "0110" => uartTxData <= "00110110"; --6
when "0111" => uartTxData <= "00110111"; --7
when "1000" => uartTxData <= "00111000"; --8
when "1001" => uartTxData <= "00111001"; --9
when "1010" => uartTxData <= "01000001"; --A
when "1011" => uartTxData <= "01000010"; --B
when "1100" => uartTxData <= "01000011"; --C
when "1101" => uartTxData <= "01000100"; --D
when "1110" => uartTxData <= "01000101"; --E
when "1111" => uartTxData <= "01000110"; --F
when others => uartTxData <= "00111111"; --?
end case;
uartTxRdy <= '1';
end if;
if i2cCntr = 8 then
case i2cRxData(3 downto 0) is
when "0000" => uartTxData <= "00110000"; --0
when "0001" => uartTxData <= "00110001"; --1
when "0010" => uartTxData <= "00110010"; --2
when "0011" => uartTxData <= "00110011"; --3
when "0100" => uartTxData <= "00110100"; --4
when "0101" => uartTxData <= "00110101"; --5
when "0110" => uartTxData <= "00110110"; --6
when "0111" => uartTxData <= "00110111"; --7
when "1000" => uartTxData <= "00111000"; --8
when "1001" => uartTxData <= "00111001"; --9
when "1010" => uartTxData <= "01000001"; --A
when "1011" => uartTxData <= "01000010"; --B
when "1100" => uartTxData <= "01000011"; --C
when "1101" => uartTxData <= "01000100"; --D
when "1110" => uartTxData <= "01000101"; --E
when "1111" => uartTxData <= "01000110"; --F
when others => uartTxData <= "00111111"; --?
end case;
uartTxRdy <= '1';
end if;
if i2cCntr = 8 then
if scl_falling_strobe = '1' then
i2cState <= I2C_SLAVE_ACK;
if i2cAddr = '1' then
i2cCmd <= i2cRxData(0);
i2cAddr <= '0';
end if;
end if;
end if;
when I2C_SLAVE_ACK =>
i2cBusDir <= SLAVE_TO_MASTER;
if scl_falling_strobe = '1' then
i2cCntr <= 0;
if i2cCmd = '0' then
i2cState <= I2C_MASTER_WRITE;
else
i2cState <= I2C_MASTER_READ;
end if;
end if;
when I2C_MASTER_READ =>
i2cBusDir <= SLAVE_TO_MASTER;
if stop_strobe = '1' then
i2cState <= I2C_IDLE;
uartTxData <= "00001010";
uartTxRdy <= '1';
end if;
if scl_rising_strobe = '1' then
if i2cCntr <= 7 then
i2cRxData(7 - i2cCntr) <= sda;
i2cCntr <= i2cCntr + 1;
end if;
end if;
if i2cCntr = 4 then
case i2cRxData(7 downto 4) is
when "0000" => uartTxData <= "00110000"; --0
when "0001" => uartTxData <= "00110001"; --1
when "0010" => uartTxData <= "00110010"; --2
when "0011" => uartTxData <= "00110011"; --3
when "0100" => uartTxData <= "00110100"; --4
when "0101" => uartTxData <= "00110101"; --5
when "0110" => uartTxData <= "00110110"; --6
when "0111" => uartTxData <= "00110111"; --7
when "1000" => uartTxData <= "00111000"; --8
when "1001" => uartTxData <= "00111001"; --9
when "1010" => uartTxData <= "01000001"; --A
when "1011" => uartTxData <= "01000010"; --B
when "1100" => uartTxData <= "01000011"; --C
when "1101" => uartTxData <= "01000100"; --D
when "1110" => uartTxData <= "01000101"; --E
when "1111" => uartTxData <= "01000110"; --F
when others => uartTxData <= "00111111"; --?
end case;
uartTxRdy <= '1';
end if;
if i2cCntr = 8 then
case i2cRxData(3 downto 0) is
when "0000" => uartTxData <= "00110000"; --0
when "0001" => uartTxData <= "00110001"; --1
when "0010" => uartTxData <= "00110010"; --2
when "0011" => uartTxData <= "00110011"; --3
when "0100" => uartTxData <= "00110100"; --4
when "0101" => uartTxData <= "00110101"; --5
when "0110" => uartTxData <= "00110110"; --6
when "0111" => uartTxData <= "00110111"; --7
when "1000" => uartTxData <= "00111000"; --8
when "1001" => uartTxData <= "00111001"; --9
when "1010" => uartTxData <= "01000001"; --A
when "1011" => uartTxData <= "01000010"; --B
when "1100" => uartTxData <= "01000011"; --C
when "1101" => uartTxData <= "01000100"; --D
when "1110" => uartTxData <= "01000101"; --E
when "1111" => uartTxData <= "01000110"; --F
when others => uartTxData <= "00111111"; --?
end case;
uartTxRdy <= '1';
end if;
if i2cCntr = 8 and scl_falling_strobe = '1' then
i2cState <= I2C_MASTER_ACK;
end if;
when I2C_MASTER_ACK =>
i2cBusDir <= MASTER_TO_SLAVE;
if scl_falling_strobe = '1' then
i2cCntr <= 0;
end if;
if stop_strobe = '1' then
i2cState <= I2C_IDLE;
uartTxData <= "00001010"; -- \n
uartTxRdy <= '1';
end if;
end case;
end if;
end process;
UART: process (clk, clkDiv(1), uartTxRdy)
begin
if rising_edge(clk) then
case uartState is
when UART_IDLE =>
if uartTxRdy = '1' then
uartState <= UART_START;
end if;
when UART_START =>
if clkDiv(1 downto 0) = "00" then
tx <= '0';
uartState <= UART_DATA;
uartCntr <= 0;
end if;
when UART_DATA =>
if clkDiv(1 downto 0) = "00" then
if uartCntr <= 7 then
uartCntr <= uartCntr + 1;
tx <= uartTxData(uartCntr);
else
tx <= '1';
uartState <= UART_STOP;
end if;
end if;
when UART_STOP =>
if clkDiv(1 downto 0) = "00" then
tx <= '1';
uartState <= UART_IDLE;
end if;
end case;
end if;
end process;
end architecture arch;
Ниже приведены изменения шины, снятые с CPLD, контролирующим линию SDA.
Регистрация написать:
Зарегистрироваться читать:
Вы можете увидеть несколько сбоев при изменении направления движения автобусов. Это вызвано различиями во времени между CPLD, меняющим направление шины, и устройством чтения карт, генерирующим ACK. Уровень ACK, по-видимому, стабилен на переднем крае SCL. Насколько я знаю, это все, что вам нужно.
Когда эта вещь установлена, контроллер ведет себя так же, как и в случае разделенных шин, которые в течение нескольких секунд приостанавливают любую работу шины. Я также тестирую этот w Arduino, который имитирует этот MCU и генерирует для меня трафик шины, и похоже, что Arduino время от времени зависает. Так что я думаю, что у меня может быть какая-то проблема с конечным автоматом VHDL, когда при некоторых условиях я застреваю в одном состоянии без выхода. Любые идеи?
There's only 2 devices on this bus running at 100kHz
а потомThe hardware I2C was a slave and a bit banged I2C was a master on the card reader bus at 1Mbps
. Почему там два автобуса? Зачем нужен скоростной автобус? Предоставьте эскиз вашего первоначального дизайна и постарайтесь уточнить ваш вопрос.