Это сложный вопрос со многими факторами. Давайте посмотрим на некоторые физические свойства:
- теплопроводность (Wм ⋅ К)
- объемная теплоемкость (Jс м3⋅ К)
- медь: 3,45
- алюминий: 2,42
- плотность (граммс м3)
- анодный индекс (В)
- медь: -0,35
- алюминий: -0,95
Что означают эти свойства? Для всех последующих сравнений рассмотрим два материала одинаковой геометрии.
Более высокая теплопроводность меди означает, что температура на радиаторе будет более равномерной. Это может быть выгодно, так как концы радиатора будут теплее (и, следовательно, более эффективно излучающими), а горячая точка, прикрепленная к тепловой нагрузке, будет холоднее.
Более высокая объемная теплоемкость меди означает, что для повышения температуры радиатора потребуется больше энергии. Это означает, что медь способна «сгладить» тепловую нагрузку более эффективно. Это может означать, что короткие периоды тепловой нагрузки приводят к снижению пиковой температуры.
Очевидно, что более высокая плотность меди делает ее тяжелее.
Различный анодный индекс материалов может сделать один материал более благоприятным, если гальваническая коррозия вызывает беспокойство. Что будет более благоприятным, будет зависеть от того, какие другие металлы контактируют с радиатором.
Основываясь на этих физических свойствах, медь, казалось бы, обладает превосходными тепловыми характеристиками в каждом случае. Но как это перевести на реальную производительность? Мы должны учитывать не только материал радиатора, но и то, как этот материал взаимодействует с окружающей средой. Интерфейс между радиатором и его окружением (обычно воздушным) очень важен. Кроме того, особая геометрия радиатора также важна. Мы должны рассмотреть все эти вещи.
Исследование Майкла Хаскелла « Сравнение влияния различных теплоотводящих материалов на эффективность охлаждения» теплоотводящих проведены некоторые эмпирические и вычислительные тесты на радиаторах из алюминия, меди и графита из пены одинаковой геометрии. Я могу существенно упростить результаты: (и я буду игнорировать графитовый пенный радиатор)
Для конкретной тестируемой геометрии алюминий и медь имели очень схожие характеристики, при этом медь была немного лучше. Чтобы дать вам представление, при потоке воздуха 1,5 м / с тепловое сопротивление меди от нагревателя к воздуху составляло 1,637 К / Вт, а у алюминия - 1,677. Эти цифры настолько близки, что было бы трудно обосновать дополнительные расходы и вес меди.
По мере того как теплоотвод становится большим по сравнению с охлаждаемой деталью, медь приобретает преимущество над алюминием благодаря более высокой теплопроводности. Это связано с тем, что медь способна поддерживать более равномерное распределение тепла, более эффективно отводя тепло к конечностям и более эффективно используя всю излучающую площадь. В том же исследовании было проведено вычислительное исследование для кулера с большим процессором и рассчитано тепловое сопротивление 0,57 К / Вт для меди и 0,69 К / Вт для алюминия.