МОП-транзисторы должны очень хорошо работать для этого приложения. Вот несколько вещей для рассмотрения:
1:
При использовании FET для управления нагрузкой, вы можете выбрать конфигурацию верхней или нижней стороны. Верхняя сторона размещает полевой транзистор между шиной питания и нагрузкой, а другая сторона нагрузки заземляется. В конфигурации с низкой стороны один вывод нагрузки подключен к шине питания, а полевой транзистор расположен между нагрузкой и землей:
Самый простой способ управлять вашим двигателем (или другой нагрузкой) - это использовать N-канальный MOSFET в конфигурации с низкой стороны. N-FET начинает проводить, когда его напряжение затвора выше, чем его источник. Поскольку источник подключен к земле, затвор может управляться с помощью обычной логики включения-выключения. Существует порог, по которому напряжение на затворе должно превышать («Vth») перед проведением полевого транзистора. Некоторые полевые транзисторы имеют Vth в десятках вольт. Вам нужен N-FET «логического уровня» с порогом, который значительно меньше, чем у вашего Vcc.
Есть два недостатка конфигурации FET на нижней стороне:
Обмотка двигателя подключена непосредственно к шине питания. Когда FET выключен, вся обмотка "горячая". Вы переключаете землю, а не подключение питания.
У двигателя не будет истинного заземления. Его самый низкий потенциал будет выше, чем земля, на прямом напряжении FET.
Ничто из этого не должно иметь значения в вашем дизайне. Тем не менее, они могут быть проблематичными, если вы не ожидаете их! Особенно с более мощными цепями :)
Чтобы преодолеть эти проблемы, вы можете использовать P-FET в конфигурации верхнего уровня. Тем не менее, схема движения становится немного более сложной. У выключателя P-FET обычно затвор затянут к шине питания. Эта силовая шина выше, чем Vcc UC, поэтому вы не можете подключить контакты ввода / вывода UC непосредственно к шлюзу. Распространенным решением является использование меньшего N-FET нижней стороны, чтобы опустить затвор P-FET верхней стороны:
R1 и R3 существуют, чтобы держать FET выключенными до тех пор, пока Q2 не будет приведен в действие. Вам понадобится R3 даже в конфигурации с низкой стороной.
В вашем случае, я думаю, что простой N-FET с низкой стороны (с R3) послужит вам лучше.
2:
Обратите внимание на R2 на последней диаграмме. Затвор MOSFET действует как конденсатор, который должен заряжаться до того, как начнет течь ток истока-истока. При первом включении питания может быть значительный пусковой ток, поэтому необходимо ограничить этот ток, чтобы предотвратить повреждение выходного драйвера контроллера. Кепка на мгновение будет выглядеть как короткое замыкание, поэтому нет большой погрешности. Например, ваш конкретный Atmel может выдавать 40 мА. 3,3 В / 35 мА => 94,3 Ом. 100-омный резистор будет отлично работать.
Однако этот резистор замедляет время включения и выключения полевого транзистора, что накладывает верхний предел на частоту переключения. Кроме того, это продлевает количество времени, в течение которого полевой транзистор находится в линейной области работы, что тратит впустую энергию. Если вы переключаетесь на высокой частоте, это может быть проблемой. Один индикатор, если FET становится слишком горячим!
Решением этой проблемы является использование драйвера FET. Они фактически являются буферами, которые могут подавать больший ток, и поэтому могут заряжать затвор быстрее без необходимости в ограничивающем резисторе. Кроме того, большинство драйверов FET могут использовать более высокую шину питания, чем типичные Vcc. Это более высокое напряжение затвора уменьшает сопротивление полевого транзистора, экономя дополнительную мощность. В вашем случае вы можете запитать драйвер FET напряжением 3,7 В, а управлять им - 3,3 В.
3:
Наконец, вы захотите использовать диод Шоттки для защиты от скачков напряжения, вызванных двигателем. Делайте это каждый раз, когда вы переключаете индуктивную нагрузку:
Обмотка двигателя является большой индуктивностью, поэтому она будет противостоять любым изменениям тока. Представьте, что ток течет через обмотку, а затем вы выключаете FET. Индуктивность приведет к тому, что ток продолжит течь от двигателя, когда электрические поля разрушаются. Но нет места для этого потока! Так что он пробивает FET или делает что-то еще столь же разрушительное.
Шоттки, размещенный параллельно нагрузке, обеспечивает безопасный путь для тока. Пик напряжения максимален при прямом напряжении диода, которое составляет всего 0,6 В при 1 А для указанного вами.
Предыдущая картина, конфигурация нижней стороны с обратным диодом, проста, недорога и довольно эффективна.
Единственная проблема, которую я вижу при использовании решения MOSFET, заключается в том, что оно по своей природе является однонаправленным. Ваш оригинальный L293D - это драйвер с несколькими полумостами. Это позволяет вести двигатель в обоих направлениях. Визуализация подключения двигателя между 1Y и 2Y. L293D может сделать 1Y = Vdd и 2Y = GND, и двигатель вращается в одном направлении. Или, это может сделать 1Y = GND и 2Y = Vdd, и двигатель будет вращаться в другую сторону. Довольно удобно.
Удачи и приятного времяпровождения!