У меня есть следующие таблицы (взяты из базы данных Sakila):
- film: film_id это pkey
- actor: actor_id - это pkey
- film_actor: film_id и actor_id - это ключи к фильму / актеру
Я выбираю конкретный фильм. Для этого фильма я также хочу, чтобы все актеры участвовали в этом фильме. У меня есть два запроса для этого: один с а LEFT JOIN
и один с LEFT JOIN LATERAL
.
select film.film_id, film.title, a.actors
from film
left join
(
select film_actor.film_id, array_agg(first_name) as actors
from actor
inner join film_actor using(actor_id)
group by film_actor.film_id
) as a
on a.film_id = film.film_id
where film.title = 'ACADEMY DINOSAUR'
order by film.title;
select film.film_id, film.title, a.actors
from film
left join lateral
(
select array_agg(first_name) as actors
from actor
inner join film_actor using(actor_id)
where film_actor.film_id = film.film_id
) as a
on true
where film.title = 'ACADEMY DINOSAUR'
order by film.title;
При сравнении плана запроса первый запрос работает намного хуже (в 20 раз), чем второй:
Merge Left Join (cost=507.20..573.11 rows=1 width=51) (actual time=15.087..15.089 rows=1 loops=1)
Merge Cond: (film.film_id = film_actor.film_id)
-> Sort (cost=8.30..8.31 rows=1 width=19) (actual time=0.075..0.075 rows=1 loops=1)
Sort Key: film.film_id
Sort Method: quicksort Memory: 25kB
-> Index Scan using idx_title on film (cost=0.28..8.29 rows=1 width=19) (actual time=0.044..0.058 rows=1 loops=1)
Index Cond: ((title)::text = 'ACADEMY DINOSAUR'::text)
-> GroupAggregate (cost=498.90..552.33 rows=997 width=34) (actual time=15.004..15.004 rows=1 loops=1)
Group Key: film_actor.film_id
-> Sort (cost=498.90..512.55 rows=5462 width=8) (actual time=14.934..14.937 rows=11 loops=1)
Sort Key: film_actor.film_id
Sort Method: quicksort Memory: 449kB
-> Hash Join (cost=6.50..159.84 rows=5462 width=8) (actual time=0.355..8.359 rows=5462 loops=1)
Hash Cond: (film_actor.actor_id = actor.actor_id)
-> Seq Scan on film_actor (cost=0.00..84.62 rows=5462 width=4) (actual time=0.035..2.205 rows=5462 loops=1)
-> Hash (cost=4.00..4.00 rows=200 width=10) (actual time=0.303..0.303 rows=200 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 17kB
-> Seq Scan on actor (cost=0.00..4.00 rows=200 width=10) (actual time=0.027..0.143 rows=200 loops=1)
Planning time: 1.495 ms
Execution time: 15.426 ms
Nested Loop Left Join (cost=25.11..33.16 rows=1 width=51) (actual time=0.849..0.854 rows=1 loops=1)
-> Index Scan using idx_title on film (cost=0.28..8.29 rows=1 width=19) (actual time=0.045..0.048 rows=1 loops=1)
Index Cond: ((title)::text = 'ACADEMY DINOSAUR'::text)
-> Aggregate (cost=24.84..24.85 rows=1 width=32) (actual time=0.797..0.797 rows=1 loops=1)
-> Hash Join (cost=10.82..24.82 rows=5 width=6) (actual time=0.672..0.764 rows=10 loops=1)
Hash Cond: (film_actor.actor_id = actor.actor_id)
-> Bitmap Heap Scan on film_actor (cost=4.32..18.26 rows=5 width=2) (actual time=0.072..0.150 rows=10 loops=1)
Recheck Cond: (film_id = film.film_id)
Heap Blocks: exact=10
-> Bitmap Index Scan on idx_fk_film_id (cost=0.00..4.32 rows=5 width=0) (actual time=0.041..0.041 rows=10 loops=1)
Index Cond: (film_id = film.film_id)
-> Hash (cost=4.00..4.00 rows=200 width=10) (actual time=0.561..0.561 rows=200 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 17kB
-> Seq Scan on actor (cost=0.00..4.00 rows=200 width=10) (actual time=0.039..0.275 rows=200 loops=1)
Planning time: 1.722 ms
Execution time: 1.087 ms
Почему это? Я хочу научиться рассуждать об этом, чтобы понять, что происходит, и предсказать, как будет вести себя запрос при увеличении размера данных и какие решения примет планировщик при определенных условиях.
Мои мысли: в первом LEFT JOIN
запросе похоже, что подзапрос выполняется для всех фильмов в базе данных, без учета фильтрации внешнего запроса, который нас интересует только для одного конкретного фильма. Почему планировщик не может получить эти знания в подзапросе?
В LEFT JOIN LATERAL
запросе мы более или менее «проталкиваем» эту фильтрацию вниз. Таким образом, проблема, с которой мы столкнулись в первом запросе, здесь не присутствует, следовательно, лучшая производительность.
Я думаю, что я в основном ищу правило большого пальца, общие мудрости ... так что эта магия планировщика становится второй натурой - если это имеет смысл.
обновление (1)
Переписав LEFT JOIN
следующее, вы получите лучшую производительность (чуть лучше, чем LEFT JOIN LATERAL
):
select film.film_id, film.title, array_agg(a.first_name) as actors
from film
left join
(
select film_actor.film_id, actor.first_name
from actor
inner join film_actor using(actor_id)
) as a
on a.film_id = film.film_id
where film.title = 'ACADEMY DINOSAUR'
group by film.film_id
order by film.title;
GroupAggregate (cost=29.44..29.49 rows=1 width=51) (actual time=0.470..0.471 rows=1 loops=1)
Group Key: film.film_id
-> Sort (cost=29.44..29.45 rows=5 width=25) (actual time=0.428..0.430 rows=10 loops=1)
Sort Key: film.film_id
Sort Method: quicksort Memory: 25kB
-> Nested Loop Left Join (cost=4.74..29.38 rows=5 width=25) (actual time=0.149..0.386 rows=10 loops=1)
-> Index Scan using idx_title on film (cost=0.28..8.29 rows=1 width=19) (actual time=0.056..0.057 rows=1 loops=1)
Index Cond: ((title)::text = 'ACADEMY DINOSAUR'::text)
-> Nested Loop (cost=4.47..19.09 rows=200 width=8) (actual time=0.087..0.316 rows=10 loops=1)
-> Bitmap Heap Scan on film_actor (cost=4.32..18.26 rows=5 width=4) (actual time=0.052..0.089 rows=10 loops=1)
Recheck Cond: (film_id = film.film_id)
Heap Blocks: exact=10
-> Bitmap Index Scan on idx_fk_film_id (cost=0.00..4.32 rows=5 width=0) (actual time=0.035..0.035 rows=10 loops=1)
Index Cond: (film_id = film.film_id)
-> Index Scan using actor_pkey on actor (cost=0.14..0.17 rows=1 width=10) (actual time=0.011..0.011 rows=1 loops=10)
Index Cond: (actor_id = film_actor.actor_id)
Planning time: 1.833 ms
Execution time: 0.706 ms
Как мы можем рассуждать об этом?
обновление (2)
Я продолжил некоторые эксперименты и думаю, что интересное эмпирическое правило таково: применяйте агрегатную функцию настолько высоко / поздно, насколько это возможно . Запрос в update (1), вероятно, работает лучше, потому что мы агрегируем во внешнем запросе, а не во внутреннем запросе.
То же самое применимо, если мы переписали LEFT JOIN LATERAL
вышеизложенное следующим образом:
select film.film_id, film.title, array_agg(a.first_name) as actors
from film
left join lateral
(
select actor.first_name
from actor
inner join film_actor using(actor_id)
where film_actor.film_id = film.film_id
) as a
on true
where film.title = 'ACADEMY DINOSAUR'
group by film.film_id
order by film.title;
GroupAggregate (cost=29.44..29.49 rows=1 width=51) (actual time=0.088..0.088 rows=1 loops=1)
Group Key: film.film_id
-> Sort (cost=29.44..29.45 rows=5 width=25) (actual time=0.076..0.077 rows=10 loops=1)
Sort Key: film.film_id
Sort Method: quicksort Memory: 25kB
-> Nested Loop Left Join (cost=4.74..29.38 rows=5 width=25) (actual time=0.031..0.066 rows=10 loops=1)
-> Index Scan using idx_title on film (cost=0.28..8.29 rows=1 width=19) (actual time=0.010..0.010 rows=1 loops=1)
Index Cond: ((title)::text = 'ACADEMY DINOSAUR'::text)
-> Nested Loop (cost=4.47..19.09 rows=200 width=8) (actual time=0.019..0.052 rows=10 loops=1)
-> Bitmap Heap Scan on film_actor (cost=4.32..18.26 rows=5 width=4) (actual time=0.013..0.024 rows=10 loops=1)
Recheck Cond: (film_id = film.film_id)
Heap Blocks: exact=10
-> Bitmap Index Scan on idx_fk_film_id (cost=0.00..4.32 rows=5 width=0) (actual time=0.007..0.007 rows=10 loops=1)
Index Cond: (film_id = film.film_id)
-> Index Scan using actor_pkey on actor (cost=0.14..0.17 rows=1 width=10) (actual time=0.002..0.002 rows=1 loops=10)
Index Cond: (actor_id = film_actor.actor_id)
Planning time: 0.440 ms
Execution time: 0.136 ms
Здесь мы двинулись array_agg()
вверх. Как видите, этот план тоже лучше оригинала LEFT JOIN LATERAL
.
Тем не менее, я не уверен, является ли это эмпирическое правило ( примененное к статистической функции как можно выше / позднее ) верным в других случаях.
Дополнительная информация
Скрипка: https://dbfiddle.uk/?rdbms=postgres_10&fiddle=4ec4f2fffd969d9e4b949bb2ca765ffb
Версия: PostgreSQL 10.4 на x86_64-pc-linux-musl, скомпилированная gcc (Alpine 6.4.0) 6.4.0, 64-битная
Окружающая среда: Docker: docker run -e POSTGRES_PASSWORD=sakila -p 5432:5432 -d frantiseks/postgres-sakila
. Обратите внимание, что образ в Docker-хабе устарел, поэтому сначала я сделал сборку локально: build -t frantiseks/postgres-sakila
после клонирования репозитория git.
Табличные определения:
фильм
film_id | integer | not null default nextval('film_film_id_seq'::regclass)
title | character varying(255) | not null
Indexes:
"film_pkey" PRIMARY KEY, btree (film_id)
"idx_title" btree (title)
Referenced by:
TABLE "film_actor" CONSTRAINT "film_actor_film_id_fkey" FOREIGN KEY (film_id) REFERENCES film(film_id) ON UPDATE CASCADE ON DELETE RESTRICT
актер
actor_id | integer | not null default nextval('actor_actor_id_seq'::regclass)
first_name | character varying(45) | not null
Indexes:
"actor_pkey" PRIMARY KEY, btree (actor_id)
Referenced by:
TABLE "film_actor" CONSTRAINT "film_actor_actor_id_fkey" FOREIGN KEY (actor_id) REFERENCES actor(actor_id) ON UPDATE CASCADE ON DELETE RESTRICT
FILM_ACTOR
actor_id | smallint | not null
film_id | smallint | not null
Indexes:
"film_actor_pkey" PRIMARY KEY, btree (actor_id, film_id)
"idx_fk_film_id" btree (film_id)
Foreign-key constraints:
"film_actor_actor_id_fkey" FOREIGN KEY (actor_id) REFERENCES actor(actor_id) ON UPDATE CASCADE ON DELETE RESTRICT
"film_actor_film_id_fkey" FOREIGN KEY (film_id) REFERENCES film(film_id) ON UPDATE CASCADE ON DELETE RESTRICT
Данные: это из базы данных Sakila. Этот вопрос не является реальным случаем, я использую эту базу данных в основном в качестве учебной базы данных. Я познакомился с SQL несколько месяцев назад и пытаюсь расширить свои знания. Имеет следующие дистрибутивы:
select count(*) from film: 1000
select count(*) from actor: 200
select avg(a) from (select film_id, count(actor_id) a from film_actor group by film_id) a: 5.47