Помощь с запросом PIVOT


12

У меня есть таблица со структурой ниже:

CREATE TABLE [dbo].[AUDIT_SCHEMA_VERSION](
    [SCHEMA_VER_MAJOR] [int] NOT NULL,
    [SCHEMA_VER_MINOR] [int] NOT NULL,
    [SCHEMA_VER_SUB] [int] NOT NULL,
    [SCHEMA_VER_DATE] [datetime] NOT NULL,
    [SCHEMA_VER_REMARK] [varchar](250) NULL
);

некоторые примеры данных (кажется, проблема с sqlfiddle .. поэтому добавим некоторые примеры данных):

INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,6,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,6,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,7,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,10,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,12,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,12,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20140417 18:10:44.100' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,5,0,CAST('20140417 18:14:14.157' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,6,0,CAST('20140417 18:14:23.327' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,7,0,CAST('20140417 18:14:32.270' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,8,0,CAST('20141209 09:38:40.700' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,9,0,CAST('20141209 09:43:04.237' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,10,0,CAST('20141209 09:45:19.893' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,13,0,CAST('20150323 14:54:30.847' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,10,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,14,CAST('20140417 18:11:07.977' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,15,CAST('20140417 18:11:13.130' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,2,0,CAST('20140417 18:12:11.200' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,3,0,CAST('20140417 18:12:33.330' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,4,0,CAST('20140417 18:12:48.803' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,13,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,11,0,CAST('20141209 09:45:58.993' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,12,0,CAST('20141209 09:46:50.070' as DATETIME),'Stored procedure build');

Вот SQLFiddleпример с некоторыми данными.

Может ли кто-нибудь с опытом работы с T-sql помочь мне в достижении конечного результата? Я знаю, что PIVOT(с динамическими столбцами) будет правильный подход, но не могу понять это.

Ожидаемые результаты :

введите описание изображения здесь

Пока что у меня ниже:

select row_number() over (
        partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_DATE 
        ) as rownum
    ,CONVERT(varchar(10), SCHEMA_VER_DATE, 110) as UPG_DATE
    ,CONVERT(varchar(1), SCHEMA_VER_MAJOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_MINOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_SUB) as SCHEMA_VER
from audit_schema_version
where SCHEMA_VER_REMARK like 'Stored procedure build'
order by UPGRADE_DATE 

введите описание изображения здесь

Ответы:


20

Это немного грязно, чтобы получить окончательный результат, потому что у вас есть несколько SCHEMA_VERдля каждой даты. Прежде чем продемонстрировать, как это сделать с помощью динамического SQL, я сначала покажу, как это сделать со статическим кодом, чтобы получить правильную логику. Чтобы получить окончательный результат, вы можете использовать как pivot, так и unpivot.

Но сначала я бы изменил ваш исходный запрос, чтобы использовать следующее:

select 
    row_number() over (
    partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR, SCHEMA_VER_MINOR, SCHEMA_VER_SUB
    ) as minrownum
, row_number() over (
    partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR desc, SCHEMA_VER_MINOR desc, SCHEMA_VER_SUB desc
    ) as maxrownum
,CONVERT(varchar(10), SCHEMA_VER_DATE, 110) as UPG_DATE
,CONVERT(varchar(1), SCHEMA_VER_MAJOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_MINOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_SUB) as SCHEMA_VER
from audit_schema_version
where SCHEMA_VER_REMARK like 'Stored procedure build';

Смотрите SQL Fiddle с демонстрацией . Я имел обыкновение row_number()получать первое и последнее SCHEMA_VERдля каждой даты. Это необходимо, чтобы вы могли объединить только эти значения вместе для комментария.

Тогда я бы использовал временную таблицу для хранения строк, которые имеют а minrownumи maxrownum1. Временная таблица будет содержать upg_dateи comment. Этот столбец комментариев содержит объединенную строку пары SCHEMA_VERдля каждой даты.

create table #srcData
(
    upg_date varchar(10),
    comment varchar(500)
);

Код для заполнения временной таблицы будет:

;with cte as
(
  select 
        row_number() over (
        partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR, SCHEMA_VER_MINOR, SCHEMA_VER_SUB
        ) as minrownum
    , row_number() over (
        partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR desc, SCHEMA_VER_MINOR desc, SCHEMA_VER_SUB desc
        ) as maxrownum
    ,CONVERT(varchar(10), SCHEMA_VER_DATE, 110) as UPG_DATE
    ,CONVERT(varchar(1), SCHEMA_VER_MAJOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_MINOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_SUB) as SCHEMA_VER
  from audit_schema_version
  where SCHEMA_VER_REMARK like 'Stored procedure build'
)
insert into #srcData
select distinct
    c1.UPG_DATE,
    comment 
        = STUFF((
                  SELECT ' - ' + c2.SCHEMA_VER 
                  FROM cte c2
                  WHERE (c2.minrownum = 1 or c2.maxrownum = 1)
                    and c1.upg_date = c2.upg_date
                  order by c2.minrownum
                  FOR XML PATH(''), TYPE).value('.[1]', 'nvarchar(max)'), 1, 2, '') 
from cte c1
where c1.minrownum = 1 or c1.maxrownum = 1;

Этот первый проход через ваши данные дает вам:

|   upg_date |           comment |
|------------|-------------------|
| 03-23-2015 |            2.13.0 |
| 04-05-2013 |  1.6.13 - 1.16.13 |
| 04-17-2014 |   1.16.13 - 2.7.0 |
| 12-09-2014 |    2.8.0 - 2.12.0 |

Теперь вам все еще нужно получить количество каждой даты за год и полный каскадный комментарий. Это будет то, где в игру вступает непивот. Вы можете использовать следующий код, чтобы создать полный комментарий для каждого года и получить счет.

select distinct 
    Yr =  right(s1.upg_date, 4),
    cnt = count(*) over(partition by right(s1.upg_date, 4)),
    fullcomment 
            = STUFF((
                      SELECT '; ' + s2.comment 
                      FROM #srcData s2
                      WHERE right(s1.upg_date, 4) = right(s2.upg_date, 4)
                      FOR XML PATH(''), TYPE).value('.[1]', 'nvarchar(max)'), 1, 2, '') 
from #srcData s1;

Смотрите SQL Fiddle с демонстрацией . Данные теперь выглядят так:

|   Yr | cnt |                       fullcomment |
|------|-----|-----------------------------------|
| 2013 |   1 |                  1.6.13 - 1.16.13 |
| 2014 |   2 |  1.16.13 - 2.7.0;  2.8.0 - 2.12.0 |
| 2015 |   1 |                            2.13.0 |

Как вы можете видеть , у вас есть несколько столбцов , которые должны быть повернуты, так что вы можете UNPIVOT как fullcommentи cntстолбец в несколько строк. Это можно сделать с помощью функции UNPIVOT или CROSS APPLY. Я бы предпочел перекрестное применение здесь, потому что вы хотите объединить значения вместе, чтобы создать новые имена столбцов:

;with cte as
(
    select distinct 
        Yr =  right(s1.upg_date, 4),
        cnt = count(*) over(partition by right(s1.upg_date, 4)),
        fullcomment 
                = STUFF((
                          SELECT '; ' + s2.comment 
                          FROM #srcData s2
                          WHERE right(s1.upg_date, 4) = right(s2.upg_date, 4)
                          FOR XML PATH(''), TYPE).value('.[1]', 'nvarchar(max)'), 1, 2, '') 
    from #srcData s1
) 
select [2015], [2015_comment], [2014], [2014_comment], [2013], [2013_comment]
from
(
    select c.col, val
    from cte d
    cross apply
    (
        values 
            (Yr, cast(cnt as nvarchar(50))),
            (Yr+'_comment', fullcomment)
    ) c (col, val)  
) d
pivot
(
    max(val)
    for col in ([2015], [2015_comment], [2014], [2014_comment], [2013], [2013_comment])
) piv;

Смотрите SQL Fiddle с демонстрацией .

Если у вас есть логика, вы можете легко преобразовать это в динамический SQL.

-- get list of the columns
DECLARE @cols AS NVARCHAR(MAX),
    @query  AS NVARCHAR(MAX)

select @cols = STUFF((SELECT  ',' + QUOTENAME(col) 
                    from #srcData
                    cross apply
                    (
                        select right(upg_date, 4), right(upg_date, 4), 2 union all
                        select right(upg_date, 4), right(upg_date, 4)+'_comment', 1
                    ) c (yr, col, so)
                    group by yr, col, so
                    order by yr desc, so desc
            FOR XML PATH(''), TYPE
            ).value('.', 'NVARCHAR(MAX)') 
        ,1,1,'')

set @query 
    = 'SELECT ' + @cols + ' 
        from 
        (
            select c.col, val
            from
            (
                select distinct 
                    Yr =  right(s1.upg_date, 4),
                    cnt = count(*) over(partition by right(s1.upg_date, 4)),
                    fullcomment 
                            = STUFF((
                                      SELECT ''; '' + s2.comment 
                                      FROM #srcData s2
                                      WHERE right(s1.upg_date, 4) = right(s2.upg_date, 4)
                                      FOR XML PATH(''''), TYPE).value(''.[1]'', ''nvarchar(max)''), 1, 2, '''') 
                from #srcData s1
            ) d
            cross apply
            (
                values 
                    (Yr, cast(cnt as nvarchar(50))),
                    (Yr+''_comment'', fullcomment)
            ) c (col, val)  
        ) x
        pivot 
        (
           max(val)
           for col in (' + @cols + ')
        ) p '

exec sp_executesql @query;

Смотрите SQL Fiddle с демонстрацией . Обе версии дадут вам результат:

| 2015 | 2015_comment | 2014 |                      2014_comment | 2013 |      2013_comment |
|------|--------------|------|-----------------------------------|------|-------------------|
|    1 |       2.13.0 |    2 |  1.16.13 - 2.7.0;  2.8.0 - 2.12.0 |    1 |  1.6.13 - 1.16.13 |

5

Добавление объяснения и скрипки: http://sqlfiddle.com/#!6/c92b2/5 .

Запрос ниже:
1. использует подзапрос, чтобы выбрать минимальную и максимальную версии по дате (минимальное и максимальное применяются к целым числам, чтобы гарантировать, что, например, 6 <16)
2. Затем выбирается год (для группировки позже), Дата (для порядок) и мин - макс версии

SELECT LEFT(UPG_DATE, 4) AS Year
    , UPG_DATE
    , CONVERT(varchar(1), MIN_VER/1000000) + '.' + CONVERT(varchar(2), (MIN_VER/1000 - (MIN_VER/1000000)*1000)) + '.' + CONVERT(varchar(2), MIN_VER%1000)
        + ' - ' + CONVERT(varchar(1), MAX_VER/1000000) + '.' + CONVERT(varchar(2), (MAX_VER/1000 - (MAX_VER/1000000)*1000)) + '.' + CONVERT(varchar(2), MAX_VER%1000) AS Versions
INTO #Versions
FROM (
    SELECT CONVERT(varchar(10), SCHEMA_VER_DATE, 112) as UPG_DATE
        , MIN(SCHEMA_VER_MAJOR*1000000 + SCHEMA_VER_MINOR*1000 + SCHEMA_VER_SUB) AS MIN_VER
        , MAX(SCHEMA_VER_MAJOR*1000000 + SCHEMA_VER_MINOR*1000 + SCHEMA_VER_SUB) AS MAX_VER
    FROM audit_schema_version
    WHERE SCHEMA_VER_REMARK like 'Stored procedure build'
    GROUP BY CONVERT(varchar(10), SCHEMA_VER_DATE, 112)
) Versions;

Далее, поскольку каждый столбец будет повторяться (year и year_COMMENT), для идентификации данных будут выбраны два столбца. Количество дат подсчитывается для того, чтобы узнать количество обновлений, а версии сгруппированы по годам, так что все получается в одну строку. Это дает нам финальную таблицу, которая будет использоваться для разворота.

SELECT Year, Year + '_COMMENT' as Year_COMMENT
    , COUNT(Year) AS Upgrades
    , STUFF((SELECT ' ; ' + SUB.Versions
                FROM #Versions SUB
                WHERE SUB.Year = V.Year
                ORDER BY UPG_DATE ASC
                FOR XML PATH(''), TYPE
                ).value('.', 'NVARCHAR(2000)')
            ,1,3,'') Versions
INTO #GroupedResults
FROM #Versions V
GROUP BY Year

SELECT * FROM #GroupedResults

Вот результаты:

| Year | Year_COMMENT | Upgrades | Versions                         |
|------|--------------|----------|----------------------------------|
| 2013 | 2013_COMMENT | 1        | 1.6.13 - 1.16.13                 |
| 2014 | 2014_COMMENT | 2        | 1.16.13 - 2.7.0 ; 2.8.0 - 2.12.0 |
| 2015 | 2015_COMMENT | 1        | 2.13.0 - 2.13.0                  |

Далее переменная заполняется столбцами, упорядоченными так, как мы хотим их отобразить:

DECLARE @cols VARCHAR(1000),
    @finalQuery VARCHAR(2000)

SELECT @cols = STUFF((SELECT ',' + QUOTENAME(YEAR) + ',' + QUOTENAME(YEAR + '_COMMENT')
                    FROM #GroupedResults
                    GROUP BY YEAR
                    ORDER BY YEAR DESC
                    FOR XML PATH(''), TYPE
                    ).value('.', 'NVARCHAR(2000)')
    ,1,1,'')

Наконец, приведенный ниже запрос использует перекрестное применение, поэтому мы получаем:
1. Столбец столбца, заполненный значениями Year и Year_COMMENT
2. Столбец значения, заполненный количеством обновлений, в строках, соответствующих годам, и значениями версий в строки, соответствующие Year_COMMENTs. Сводка
используется над двумя результирующими столбцами, давая нам значения (количество обновлений, чередующихся с версиями) по col (годы, чередующиеся с Year_COMMENTs)

set @finalQuery = N'SELECT ' + @cols + N' from 
             (
                select col, value
                from #GroupedResults
                cross apply
                (
                    SELECT CAST(Upgrades AS VARCHAR(200)), Year
                    UNION ALL
                    SELECT CAST(Versions AS VARCHAR(200)), Year_COMMENT
                ) c (value, col)
            ) x
            pivot 
            (
                Min(value)
                for col in (' + @cols + N')
            ) p1
            ; '

EXEC (@finalQuery);

DROP TABLE #Versions;
DROP TABLE #GroupedResults;

Это возвращает следующие результаты:

| 2015 | 2015_COMMENT    | 2014 | 2014_COMMENT                     | 2013 | 2013_COMMENT     |
|------|-----------------|------|----------------------------------|------|------------------|
| 1    | 2.13.0 - 2.13.0 | 2    | 1.16.13 - 2.7.0 ; 2.8.0 - 2.12.0 | 1    | 1.6.13 - 1.16.13 |
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.