Неформально говоря, колмогоровская сложность строки - это длина самой короткой программы, которая выводит . Мы можем определить понятие «случайная строка», используя ее ( является случайным, если ). Легко видеть, что большинство строк случайные (коротких программ не так много).х х К ( х ) ≥ 0,99 | х |
Теория сложности Колмогорова и алгоритмическая теория информации в настоящее время достаточно развиты. И есть несколько забавных примеров использования колмогоровской сложности в доказательствах различных теорем, которые не содержат ничего о колмогоровской сложности в своих высказываниях ( конструктивная LLL , неравенство Лумиса-Уитни и т. Д.).
Есть ли хорошие применения колмогоровской сложности и алгоритмической теории информации в вычислительной сложности и смежных областях ? Я чувствую, что должны быть результаты, использующие колмогоровскую сложность в качестве простой замены простых подсчитывающих аргументов. Это, конечно, не так интересно.