Обратите внимание, что это вопрос, связанный с обучением на курсе CS в университете, это НЕ домашняя работа, и его можно найти здесь под экзаменом осень 2011 года2.
Вот два вопроса, на которые я смотрю с прошлого экзамена. Похоже, они связаны, первое:
Позволять
Докажите, что является разрешимым языком.
и...
Позволять
Докажите, что - неразрешимый язык.
Я немного растерялся, как решать эти проблемы, но у меня есть несколько идей, которые, я думаю, могут быть в правильном направлении. Первое, что мне известно, это то, что язык , где
является разрешимым языком (доказательство в теории вычислений Майкла Сипсера , стр. 168). Тот же источник также доказывает, что контекстно-свободная грамматика может быть преобразована в регулярное выражение, и наоборот. Таким образом, также должен быть разрешимым, поскольку его можно преобразовать в регулярное выражение. Это, а также тот факт , что Т М является ипом -разрешимого, по- видимому, связан с этой проблемой.
Единственное , что можно думать о прохождении G Тьюрингу машиной для (после преобразования G с регулярным выражением) и Т М . Затем принять, если G делает, и отклонить, если G нет. Как A T M неразрешимо, этого никогда не произойдет. Почему-то мне кажется, что я здесь ошибаюсь, но я не уверен, что это такое. Может ли кто-нибудь помочь мне здесь?