Изображение прятки


15

В этом задании вам нужно найти определенный пиксель на фотографии (сделанной реальной камерой).

Вам передают (R, G, B) кортеж и изображение, и вам необходимо вернуть точку (x, y) на изображении, которая соответствует заданному цвету RGB . Изображение может иметь несколько точек, которые соответствуют цвету; вам нужно только найти 1.

Проблема в том , что вы должны сделать это во время чтения в несколько пикселей , как это возможно . Ваша оценка будет равна общему количеству пикселей, прочитанных во всех тестах.

Если вы хотите, вы можете прочитать все изображение в массив значений RGB, если только вы не выполняете обработку пикселей. Я разрешаю это исключительно в целях эффективности. Например, в Python list(Image.open("image_name+".jpg").convert("RGB").getdata())все в порядке.

Жесткое кодирование мест не допускается. Ваш алгоритм должен хорошо работать не только для тестов, перечисленных ниже. Вы не можете сохранять данные между тестами. Я выбрал значения RGB, которые нечасто появляются <10на изображении (в случае, если это имеет значение для вашего алгоритма). Если вы используете случайность в своем алгоритме, пожалуйста, установите начальное значение, чтобы ваш счет был постоянным.

Изображения можно найти на Github

Тестовые случаи:

image_name: 
(r, g, b) [all possible answers]

barn:
(143,91,33) [(887,1096),(2226,1397),(2007,1402),(2161,1508),(1187,1702)]
(53,35,59) [(1999,1260)]
(20,24,27) [(1328,1087),(154,1271)]
(167,148,176) [(1748,1204)]
(137,50,7) [(596,1498)]
(116,95,94) [(1340,1123)]
(72,49,59) [(1344,857),(1345,858),(1380,926),(1405,974),(1480,1117)]
(211,163,175) [(1963,745)]
(30,20,0) [(1609,1462),(1133,1477),(1908,1632)]
(88,36,23) [(543,1494),(431,1575)]
daisy:
(21,57,91) [(1440,1935),(2832,2090),(2232,2130),(1877,2131),(1890,2132)]
(201,175,140) [(1537,1749),(2319,1757)]
(169,160,0) [(2124,759)]
(113,123,114) [(1012,994),(2134,1060),(1803,1183),(1119,1335)]
(225,226,231) [(3207,829),(3256,889),(3257,889),(1434,981),(2599,1118),(2656,1348),(2656,1351)]
(17,62,117) [(2514,3874),(2336,3885)]
(226,225,204) [(3209,812)]
(119,124,146) [(2151,974),(2194,1021),(2194,1022),(2202,1034),(2812,1500)]
(2,63,120) [(2165,3881),(2326,3882),(2330,3882),(2228,3887)]
(200,167,113) [(1453,1759)]
dandelion:
(55,2,46) [(667,825),(668,825)]
(95,37,33) [(1637,1721),(1625,1724),(1405,1753),(2026,2276),(2016,2298)]
(27,41,50) [(1267,126),(424,519),(2703,1323),(1804,3466)]
(58,92,129) [(2213,3274)]
(136,159,105) [(1300,2363),(2123,2645),(1429,3428),(1430,3432),(1417,3467),(1393,3490),(1958,3493)]
(152,174,63) [(2256,2556)]
(78,49,19) [(2128,2836)]
(217,178,205) [(2736,3531)]
(69,95,130) [(870,305),(493,460),(2777,1085),(2791,1292),(2634,3100)]
(150,171,174) [(2816,1201),(2724,2669),(1180,2706),(1470,3215),(1471,3215)]
gerbera:
(218,186,171) [(4282,1342)]
(180,153,40) [(4596,1634),(4369,1682),(4390,1708),(4367,1750)]
(201,179,119) [(4282,1876),(4479,1928)]
(116,112,149) [(5884,252),(4168,371),(4169,372),(4164,384),(5742,576)]
(222,176,65) [(4232,1548)]
(108,129,156) [(5341,3574),(5339,3595),(5302,3734)]
(125,99,48) [(4548,1825),(4136,1932),(5054,2013),(5058,2023),(5058,2035),(5055,2050),(5031,2073)]
(170,149,32) [(4461,1630),(4520,1640)]
(156,185,203) [(3809,108)]
(103,67,17) [(4844,1790)]
hot-air:
(48,21,36) [(1992,1029),(2005,1030),(2015,1034),(2018,1036)]
(104,65,36) [(3173,1890),(3163,1893)]
(169,89,62) [(4181,931),(4210,938),(4330,1046),(4171,1056),(3117,1814)]
(68,59,60) [(1872,220),(1874,220),(1878,220),(1696,225),(3785,429)]
(198,96,74) [(4352,1057)]
(136,43,53) [(1700,931)]
(82,42,32) [(4556,961),(4559,973),(4563,989),(4563,990),(4441,1004),(4387,1126),(4378,1128)]
(192,132,72) [(1399,900),(3105,1822),(3104,1824),(3105,1824),(3107,1826),(3107,1827),(3104,1839),(3119,1852)]
(146,21,63) [(1716,993)]
(125,64,36) [(4332,937)]
in-input:
(204,90,1) [(1526,1997),(1385,2145),(4780,2807),(4788,3414)]
(227,163,53) [(1467,1739),(2414,1925),(2441,2198),(134,2446)]
(196,179,135) [(3770,2740),(1110,3012),(3909,3216),(1409,3263),(571,3405)]
(208,59,27) [(1134,1980),(4518,2108),(4515,2142)]
(149,70,1) [(4499,1790),(2416,2042),(1338,2150),(3731,2408),(3722,2409),(4400,3618)]
(168,3,7) [(987,402),(951,432),(1790,1213),(1790,1214),(1848,1217),(4218,1840),(4344,1870),(1511,1898)]
(218,118,4) [(3857,1701),(1442,1980),(1411,2156),(25,2606)]
(127,153,4) [(3710,2813)]
(224,230,246) [(2086,160),(2761,222),(4482,1442)]
(213,127,66) [(4601,1860),(4515,2527),(4757,2863)]
klatschmohn:
(170,133,19) [(1202,2274),(1202,2275),(957,2493),(1034,2633),(3740,3389),(3740,3391),(3683,3439)]
(162,92,4) [(489,2854)]
(159,175,104) [(3095,2475),(3098,2481)]
(199,139,43) [(1956,3055)]
(171,169,170) [(3669,1487),(3674,1490),(3701,1507)]
(184,115,58) [(1958,2404)]
(228,169,5) [(1316,2336),(1317,2336)]
(179,165,43) [(3879,2380),(1842,2497),(1842,2498)]
(67,21,6) [(1959,2197),(2157,2317),(2158,2317),(2158,2318),(2116,2373)]
(213,100,106) [(1303,1816)]
tajinaste-rojo:
(243,56,99) [(1811,2876),(1668,4141),(2089,4518),(1981,4732),(1659,4778),(2221,5373),(1779,5598),(2210,5673),(2373,5860)]
(147,157,210) [(1835,1028),(1431,3358)]
(114,37,19) [(1792,3572),(1818,3592)]
(108,117,116) [(2772,4722),(1269,5672),(2512,5811),(2509,5830),(2186,5842),(2186,5846),(2190,5851),(2211,5884)]
(214,197,93) [(1653,4386)]
(163,102,101) [(2226,2832),(2213,3683),(1894,4091),(1875,4117)]
(192,192,164) [(2175,2962),(2206,3667),(2315,3858),(1561,3977),(3039,5037),(3201,5641)]
(92,118,45) [(1881,1704),(1983,1877),(2254,2126),(3753,5862),(3766,5883)]
(145,180,173) [(1826,1585)]
(181,124,105) [(1969,3892)]
turret-arch:
(116,70,36) [(384,648),(516,669)]
(121,115,119) [(2419,958)]
(183,222,237) [(172,601),(183,601),(110,611),(111,617)]
(237,136,82) [(2020,282),(676,383),(748,406),(854,482),(638,497),(647,661),(1069,838),(1809,895),(1823,911)]
(193,199,215) [(1567,919),(1793,1047)]
(33,30,25) [(1307,861),(309,885),(1995,895),(504,1232),(2417,1494)]
(17,23,39) [(1745,1033),(788,1090),(967,1250)]
(192,139,95) [(1445,1337)]
(176,125,98) [(1197,1030)]
(178,83,0) [(2378,1136)]
water-lilies:
(86,140,80) [(2322,2855),(4542,3005),(4540,3006),(4577,3019)]
(218,124,174) [(1910,2457)]
(191,77,50) [(2076,1588)]
(197,211,186) [(4402,1894)]
(236,199,181) [(2154,1836)]
(253,242,162) [(1653,1430)]
(114,111,92) [(1936,2499)]
(111,93,27) [(2301,2423),(2127,2592),(2137,2717),(2147,2717)]
(139,92,102) [(1284,2243),(1297,2258)]
(199,157,117) [(3096,993)]

2
Есть ли корреляция в изображениях, на которых мы будем тестироваться? (Могут ли изображения быть шумными) Если нет, то, конечно, единственным способом будет случайная выборка, пока не будет выбран правильный пиксель?
Синий

2
@muddyfish изображения сделаны реальными камерами реальных объектов, так что здесь есть оптимизация. Ваш алгоритм должен определенно ориентироваться на изображения, а не на конкретные цвета, которые я даю.
Натан Меррилл

«читая как можно меньше пикселей», как вы это определяете?
Дэвид

Из-за различий в библиотеках и языках я не могу определить методы, которые считаются «доступными». О чем конкретно ты думаешь?
Натан Меррилл

Должно ли решение выводить количество пикселей, которые оно проверило?
Трихоплакс

Ответы:


5

Python, оценка: 14 035 624

Во-первых, вот код:

from heapq import heappush, heappop
from PIL import Image
import random

random.seed(1)


def dist(x, y):
    return sum([(x[i] - y[i]) ** 2 for i in range(3)])


def gradient_descent(image_name, c):
    im = Image.open(image_name + '.jpg').convert('RGB')
    L = im.load()
    sx, sy = im.size
    heap = []
    visited = set()
    count = 0
    points = []
    for i in range(0, sx, sx / 98):
        for j in range(0, sy, sy / 98):
            points.append((i, j))
    for x in points:
        heappush(heap, [dist(c, L[x[0], x[1]]), [x[0], x[1]]])
        visited.add((x[0], x[1]))

    while heap:
        if count % 10 == 0:
            x = random.random()
            if x < 0.5:
                n = heap.pop(random.randint(10, 100))
            else:
                n = heappop(heap)
        else:
            n = heappop(heap)
        x, y = n[1]
        c_color = L[x, y]
        count += 1

        if c_color == c:
            p = float(len(visited)) / (sx * sy) * 100
            print('count: {}, percent: {}, position: {}'.format(len(visited), p, (x, y)))
            return len(visited)

        newpoints = []
        newpoints.append((x + 1, y))
        newpoints.append((x - 1, y))
        newpoints.append((x, y + 1))
        newpoints.append((x, y - 1))
        newpoints.append((x + 1, y + 1))
        newpoints.append((x + 1, y - 1))
        newpoints.append((x - 1, y + 1))
        newpoints.append((x - 1, y - 1))

        for p in newpoints:
            if p not in visited:
                try:
                    d = dist(c, L[p[0], p[1]])
                    heappush(heap, [d, [p[0], p[1]]])
                    visited.add(p)
                except IndexError:
                    pass

и вот рисунок, показывающий, как алгоритм проверяет пиксели:

Итак, вот что делает этот код: переменным heapявляется приоритетной очередью из (x, y)координат изображения, отсортирована по евклидову расстояния цвета при этом координат целевого цвета. Он инициализируется с помощью 10 200 точек, которые равномерно распределены по всему изображению.

С инициализированной кучей мы вырываемся из точки с минимальным расстоянием до целевого цвета. Если цвет в этой точке имеет расстояние> 0, то есть, если цвет в этой точке НЕ является целевым, мы добавляем к нему 8 окружающих точек heap. Чтобы гарантировать, что данная точка не рассматривается более одного раза, мы поддерживаем переменную visited, которая представляет собой набор всех точек, которые были рассмотрены до сих пор.

Иногда, вместо того , чтобы непосредственно принимать точку с минимальным расстоянием цвета, мы случайным образом выбрать какой - нибудь другой точки из вблизи верхней части очереди. Это не является строго необходимым, но в моем тестировании, оно сбрасывает приблизительно 1 000 000 пикселей от общего балла. Как только целевой цвет найден, мы просто возвращаем длину visitedнабора.

Как и @Karl Napf, я игнорировал тестовые случаи, когда указанный цвет отсутствовал на изображении. Вы можете найти программу-драйвер для выполнения всех контрольных примеров в репозитории GitHub, который я создал для этого ответа.

Вот результаты каждого конкретного теста:

barn
color: (143, 91, 33), count: 20388 / 0.452483465755%, position: (612, 1131)
color: (53, 35, 59), count: 99606 / 2.21061742643%, position: (1999, 1260)
color: (72, 49, 59), count: 705215 / 15.6512716943%, position: (1405, 974)

daisy
color: (21, 57, 91), count: 37393 / 0.154770711039%, position: (1877, 2131)
color: (169, 160, 0), count: 10659 / 0.0441179100089%, position: (2124, 759)
color: (113, 123, 114), count: 674859 / 2.79326096545%, position: (1119, 1335)
color: (225, 226, 231), count: 15905 / 0.0658312560927%, position: (3256, 889)
color: (17, 62, 117), count: 15043 / 0.0622634131029%, position: (2514, 3874)
color: (226, 225, 204), count: 138610 / 0.573710808362%, position: (1978, 1179)
color: (119, 124, 146), count: 390486 / 1.61623287435%, position: (2357, 917)
color: (2, 63, 120), count: 10063 / 0.0416510487306%, position: (2324, 3882)
color: (200, 167, 113), count: 16393 / 0.06785110224%, position: (1453, 1759)

dandelion
color: (95, 37, 33), count: 10081 / 0.0686342592593%, position: (1625, 1724)
color: (27, 41, 50), count: 2014910 / 13.7180691721%, position: (1267, 126)
color: (58, 92, 129), count: 48181 / 0.328029684096%, position: (1905, 756)
color: (136, 159, 105), count: 10521 / 0.0716299019608%, position: (1416, 3467)
color: (152, 174, 63), count: 10027 / 0.0682666122004%, position: (2256, 2558)
color: (69, 95, 130), count: 201919 / 1.37472086057%, position: (2708, 2943)
color: (150, 171, 174), count: 29714 / 0.202301198257%, position: (1180, 2706)

gerbera
color: (180, 153, 40), count: 21904 / 0.0906612910062%, position: (4459, 1644)
color: (116, 112, 149), count: 14896 / 0.0616549758413%, position: (5884, 252)
color: (222, 176, 65), count: 76205 / 0.315414704215%, position: (4313, 2097)
color: (108, 129, 156), count: 12273 / 0.0507983027994%, position: (5302, 3734)
color: (125, 99, 48), count: 26968 / 0.111621333814%, position: (5054, 2013)
color: (170, 149, 32), count: 89591 / 0.370819746281%, position: (4478, 1647)
color: (156, 185, 203), count: 177373 / 0.734151989118%, position: (4096, 368)
color: (103, 67, 17), count: 11035 / 0.0456741849093%, position: (4844, 1790)

hot-air
color: (48, 21, 36), count: 49711 / 0.24902994992%, position: (1990, 1095)
color: (104, 65, 36), count: 9927 / 0.0497298447599%, position: (3191, 1846)
color: (68, 59, 60), count: 195418 / 0.978957066918%, position: (3948, 470)
color: (82, 42, 32), count: 12216 / 0.0611967143737%, position: (4559, 984)
color: (192, 132, 72), count: 116511 / 0.583668171938%, position: (3103, 1844)

in-input
color: (204, 90, 1), count: 44058 / 0.248299807393%, position: (4695, 2559)
color: (227, 163, 53), count: 12654 / 0.0713147615132%, position: (221, 2384)
color: (196, 179, 135), count: 181534 / 1.02307996812%, position: (1030, 3486)
color: (208, 59, 27), count: 9956 / 0.0561095120614%, position: (4518, 2108)
color: (149, 70, 1), count: 13698 / 0.0771984829467%, position: (3731, 2408)
color: (168, 3, 7), count: 19381 / 0.10922644167%, position: (942, 398)
color: (218, 118, 4), count: 36648 / 0.206538911011%, position: (25, 2606)
color: (224, 230, 246), count: 1076427 / 6.06647185011%, position: (4482, 1442)
color: (213, 127, 66), count: 62673 / 0.353209265712%, position: (4701, 2579)

klatschmohn
color: (170, 133, 19), count: 11535 / 0.0724321530189%, position: (1034, 2633)
color: (162, 92, 4), count: 103795 / 0.651763790429%, position: (489, 2854)
color: (159, 175, 104), count: 10239 / 0.0642941321856%, position: (3098, 2481)
color: (171, 169, 170), count: 10119 / 0.063540611738%, position: (3674, 1490)
color: (184, 115, 58), count: 22425 / 0.140814133632%, position: (1958, 2404)
color: (228, 169, 5), count: 10449 / 0.0656127929688%, position: (1316, 2336)
color: (179, 165, 43), count: 10285 / 0.0645829816905%, position: (1842, 2498)
color: (67, 21, 6), count: 10206 / 0.0640869140625%, position: (2116, 2373)
color: (213, 100, 106), count: 11712 / 0.073543595679%, position: (1303, 1816)

tajinaste-rojo
color: (243, 56, 99), count: 126561 / 0.5273375%, position: (2241, 5424)
color: (114, 37, 19), count: 11285 / 0.0470208333333%, position: (1818, 3583)
color: (108, 117, 116), count: 33855 / 0.1410625%, position: (1269, 5672)
color: (163, 102, 101), count: 1058090 / 4.40870833333%, position: (1546, 4867)
color: (192, 192, 164), count: 10118 / 0.0421583333333%, position: (1919, 3171)
color: (92, 118, 45), count: 13431 / 0.0559625%, position: (3766, 5883)
color: (145, 180, 173), count: 1207713 / 5.0321375%, position: (1863, 955)

turret-arch
color: (116, 70, 36), count: 145610 / 3.23161258822%, position: (96, 671)
color: (183, 222, 237), count: 11704 / 0.259754094722%, position: (140, 604)
color: (237, 136, 82), count: 60477 / 1.34220338231%, position: (1063, 993)
color: (193, 199, 215), count: 359671 / 7.98240046163%, position: (2259, 953)
color: (33, 30, 25), count: 148195 / 3.28898308846%, position: (1307, 861)
color: (17, 23, 39), count: 10601 / 0.235274535044%, position: (2080, 1097)
color: (192, 139, 95), count: 219732 / 4.87664787607%, position: (1127, 970)
color: (176, 125, 98), count: 2471787 / 54.8578942696%, position: (147, 734)

water-lilies
color: (86, 140, 80), count: 10371 / 0.0717376936238%, position: (4542, 3005)
color: (218, 124, 174), count: 25655 / 0.177459312498%, position: (1910, 2457)
color: (197, 211, 186), count: 1144341 / 7.91557073177%, position: (4402, 1894)
color: (253, 242, 162), count: 14174 / 0.0980435897622%, position: (1672, 1379)
color: (111, 93, 27), count: 10405 / 0.0719728764975%, position: (2147, 2717)
color: (199, 157, 117), count: 10053 / 0.0695380420403%, position: (3096, 993)

Total: 14035624

2
Это действительно хороший ответ. Хороший алгоритм тоже.
Ниемиро

1
Поиск ближайшего соседа с несколькими семенами - это здорово! Я также подумал об использовании BFS поверх DFS с кучей, как у вас, но quadsearch слишком широк.
Карл Напф

1

Python, оценка: 396 250 646

  • Хотя нет PNG-файлов для анализа и все еще есть проблемы с тестовыми сценариями, я все равно решил программировать.
  • Те тестовые случаи, где значение отсутствует на изображении, были проигнорированы (по сравнению с традиционным линейным поиском, который получил оценку 544 017 431 )
from PIL import Image

def dist(x,y):
 d = 0
 for i in range(3):
  d += (x[i]-y[i])**2
 return d

def mid(x,y):
 return (x+y)/2

class Finder:
 def __init__(self, image_name, c):
  self.image_name = image_name,
  self.c = c
  self.found = False
  self.position = None
  self.im = Image.open(image_name+".jpg").convert("RGB")
  self.L = self.im.load()
  self.visited = set()

 def quadsearch(self,x0,x1,y0,y1):
  if x0==x1 and y0==y1: return
  xm=mid(x0,x1)
  ym=mid(y0,y1)
  R = [
   (x0,xm,y0,ym),
   (xm,x1,y0,ym),
   (x0,xm,ym,y1),
   (xm,x1,ym,y1),
   ]
  P = [(mid(t[0],t[1]), mid(t[2],t[3])) for t in R]
  DR = []
  for i in range(len(P)):
   p = P[i]
   if p in self.visited: continue
   self.visited.add(p)
   u = self.L[p[0], p[1]]
   d = dist(u, self.c)
   if d == 0:
    self.found = True
    self.position = (p[0], p[1])
    return
   DR.append((d,R[i]))
  S = sorted(range(len(DR)), key=lambda k: DR[k][0])
  for i in S:
   if self.found == True: return
   r = DR[i][1]
   self.quadsearch(r[0], r[1], r[2], r[3])

 def start(self):
  sx,sy = self.im.size
  self.quadsearch(0,sx,0,sy)

 def result(self):
  if self.found:
   count = len(self.visited)
   sx,sy = self.im.size
   ratio = float(count)/(sx*sy)
   print len(self.visited), ratio, self.position, self.L[self.position[0], self.position[1]], "=", self.c
  else:
   print self.c, "not found"

if __name__ == "__main__":
 image_name="turret-arch"
 c=(116,70,36)
 F = Finder(image_name, c)
 F.start()
 F.result()

Это рекурсивный поиск по четырем разделам. Иногда он находит правильное значение в несколько процентов, иногда более 75%. Вот результаты для всех тестовых случаев:

pixels_visited, percentage, (position) (RGB at position) = (RGB searched)

tajinaste-rojo
1500765 0.062531875 (2329, 5146) (243, 56, 99) = (243, 56, 99)
(147, 157, 210) not found
335106 0.01396275 (2116, 5791) (114, 37, 19) = (114, 37, 19)
1770396 0.0737665 (1269, 5672) (108, 117, 116) = (108, 117, 116)
(214, 197, 93) not found
8086276 0.336928166667 (1546, 4867) (163, 102, 101) = (163, 102, 101)
12859 0.000535791666667 (1476, 4803) (192, 192, 164) = (192, 192, 164)
7505961 0.312748375 (3766, 5883) (92, 118, 45) = (92, 118, 45)
15057489 0.627395375 (1871, 1139) (145, 180, 173) = (145, 180, 173)
(181, 124, 105) not found
in-input
35754 0.00201500551852 (4695, 2559) (204, 90, 1) = (204, 90, 1)
5029615 0.283456451895 (10, 2680) (227, 163, 53) = (227, 163, 53)
6986547 0.393744217722 (1383, 3446) (196, 179, 135) = (196, 179, 135)
1608341 0.090642053775 (4518, 2108) (208, 59, 27) = (208, 59, 27)
581774 0.0327873194757 (3750, 2798) (149, 70, 1) = (149, 70, 1)
1302581 0.0734101891628 (4374, 1941) (168, 3, 7) = (168, 3, 7)
6134761 0.345739701008 (25, 2606) (218, 118, 4) = (218, 118, 4)
(127, 153, 4) not found
9760033 0.550050913352 (4482, 1442) (224, 230, 246) = (224, 230, 246)
212816 0.0119937745268 (4701, 2579) (213, 127, 66) = (213, 127, 66)
water-lilies
5649260 0.390767412093 (4577, 3019) (86, 140, 80) = (86, 140, 80)
12600699 0.871608412215 (1910, 2457) (218, 124, 174) = (218, 124, 174)
(191, 77, 50) not found
3390653 0.234536328318 (4402, 1894) (197, 211, 186) = (197, 211, 186)
(236, 199, 181) not found
7060220 0.488365537823 (1672, 1379) (253, 242, 162) = (253, 242, 162)
(114, 111, 92) not found
6852380 0.473988947097 (2147, 2717) (111, 93, 27) = (111, 93, 27)
(139, 92, 102) not found
14105709 0.975712111261 (3096, 993) (199, 157, 117) = (199, 157, 117)
dandelion
(55, 2, 46) not found
9094264 0.619162854031 (1637, 1721) (95, 37, 33) = (95, 37, 33)
2358912 0.16060130719 (1526, 3129) (27, 41, 50) = (27, 41, 50)
11729837 0.798600013617 (1905, 756) (58, 92, 129) = (58, 92, 129)
6697060 0.455954520697 (2246, 2685) (136, 159, 105) = (136, 159, 105)
6429635 0.437747480937 (2148, 2722) (152, 174, 63) = (152, 174, 63)
(78, 49, 19) not found
(217, 178, 205) not found
80727 0.00549611928105 (2481, 3133) (69, 95, 130) = (69, 95, 130)
239962 0.0163372821351 (2660, 917) (150, 171, 174) = (150, 171, 174)
turret-arch
210562 0.0467313240712 (725, 655) (116, 70, 36) = (116, 70, 36)
(121, 115, 119) not found
2548703 0.565649385237 (140, 604) (183, 222, 237) = (183, 222, 237)
150733 0.033453104887 (2165, 601) (237, 136, 82) = (237, 136, 82)
3458188 0.767497003862 (2259, 953) (193, 199, 215) = (193, 199, 215)
2430256 0.539361711572 (265, 1222) (33, 30, 25) = (33, 30, 25)
638995 0.141816103689 (1778, 1062) (17, 23, 39) = (17, 23, 39)
2506522 0.556287895601 (1127, 970) (192, 139, 95) = (192, 139, 95)
1344400 0.298370988504 (147, 734) (176, 125, 98) = (176, 125, 98)
(178, 83, 0) not found
hot-air
17474837 0.875411434688 (1992, 1029) (48, 21, 36) = (48, 21, 36)
1170064 0.0586149905099 (3191, 1846) (104, 65, 36) = (104, 65, 36)
(169, 89, 62) not found
11891624 0.595717352134 (3948, 470) (68, 59, 60) = (68, 59, 60)
(198, 96, 74) not found
(136, 43, 53) not found
12476811 0.625032612198 (4387, 1126) (82, 42, 32) = (82, 42, 32)
4757856 0.238347376116 (3105, 1822) (192, 132, 72) = (192, 132, 72)
(146, 21, 63) not found
(125, 64, 36) not found
daisy
5322196 0.220287235367 (2171, 2128) (21, 57, 91) = (21, 57, 91)
(201, 175, 140) not found
22414990 0.9277629343 (2124, 759) (169, 160, 0) = (169, 160, 0)
20887184 0.864526601043 (1119, 1335) (113, 123, 114) = (113, 123, 114)
595712 0.0246566923794 (2656, 1349) (225, 226, 231) = (225, 226, 231)
3397561 0.140626034757 (2514, 3874) (17, 62, 117) = (17, 62, 117)
201068 0.00832226281046 (1978, 1179) (226, 225, 204) = (226, 225, 204)
18693250 0.773719036752 (2357, 917) (119, 124, 146) = (119, 124, 146)
3091040 0.127939041706 (2165, 3881) (2, 63, 120) = (2, 63, 120)
3567932 0.147677739839 (1453, 1759) (200, 167, 113) = (200, 167, 113)
barn
314215 0.0697356740202 (784, 1065) (143, 91, 33) = (143, 91, 33)
2448863 0.543491277908 (1999, 1260) (53, 35, 59) = (53, 35, 59)
(20, 24, 27) not found
(167, 148, 176) not found
(137, 50, 7) not found
(116, 95, 94) not found
2042891 0.453391406631 (1345, 858) (72, 49, 59) = (72, 49, 59)
(211, 163, 175) not found
(30, 20, 0) not found
(88, 36, 23) not found
klatschmohn
3048249 0.191409829222 (3683, 3439) (170, 133, 19) = (170, 133, 19)
1057649 0.0664133456509 (489, 2854) (162, 92, 4) = (162, 92, 4)
2058022 0.129230138206 (3095, 2475) (159, 175, 104) = (159, 175, 104)
(199, 139, 43) not found
2060805 0.129404892156 (3674, 1490) (171, 169, 170) = (171, 169, 170)
7725501 0.485110247577 (1958, 2404) (184, 115, 58) = (184, 115, 58)
2986734 0.187547095028 (1316, 2336) (228, 169, 5) = (228, 169, 5)
497709 0.0312528257017 (3879, 2379) (179, 165, 43) = (179, 165, 43)
3996978 0.250983720944 (2157, 2318) (67, 21, 6) = (67, 21, 6)
3332106 0.209234167028 (1303, 1816) (213, 100, 106) = (213, 100, 106)
gerbera
(218, 186, 171) not found
9445576 0.390955128952 (4377, 1750) (180, 153, 40) = (180, 153, 40)
(201, 179, 119) not found
6140398 0.254152853347 (5742, 576) (116, 112, 149) = (116, 112, 149)
6500717 0.269066561215 (4233, 1541) (222, 176, 65) = (222, 176, 65)
13307056 0.550782905612 (5302, 3734) (108, 129, 156) = (108, 129, 156)
13808847 0.571552180573 (5058, 2023) (125, 99, 48) = (125, 99, 48)
9454870 0.391339810307 (4478, 1647) (170, 149, 32) = (170, 149, 32)
2733978 0.113160142012 (4096, 368) (156, 185, 203) = (156, 185, 203)
11848606 0.490417237301 (4844, 1790) (103, 67, 17) = (103, 67, 17)
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.