Цейлон / Цейлон, 49,86 40,95 балла
Третья версия использует Ceylon 1.2 для генератора и 509 байт кода:
import ceylon.language{S=String,I=Integer,e=expand}S q(I n)=>n==0then"0"else(n<0then"-"+p(-n,"-")else p(n,"+"));variable Map<[I,S],S>c=map{};S p(I n,S s){S v=c[[n,s]]else(n<8then s.join([1].repeat(n)))else(let(a="+-".replace(s,""))e(e{for(x in 2..8)let(l=(n^(1.0/x)).integer){for(r in l:2)if(r>1)let(w=r^x){if(w-n<n)"("+p(r,"+")+")^("+p(x,"+")+")"+(w<n then s+p(n-w,s)else(n<w then a+p(w-n,a)else""))}}}).reduce<S>((x,y)=>x.size<y.size then x else y))else"";c=[n,s]in c then c else map{[n,s]->v,*c};return v;}
Он опустился до 35,22 балла, но я не буду помещать это в строку заголовка, потому что Celyon 1.2 был опубликован только 29 октября. Я не думаю, что смогу реализовать этот алгоритм в Ceylon 1.1 в таком размере.). Более подробно там, здесь я опишу вторую версию. (Первую версию можно увидеть в истории - она поддерживала только положительные числа, но вмещалась в 256 байтов.)
Вторая версия
Теперь вторая версия, которая поддерживает отрицательные целые числа (и 0) и, как правило, создает немного более короткий вывод, используя дополнительно -
. (Эта версия на самом деле использует разрешенную длину, первая пыталась остаться в 256 байтах вместо 512).
String proof(Integer n) {
if (n == 0) { return "0"; }
if (n < 0) { return "-" + p(-n, "-"); }
return p(n, "+");
}
String p(Integer n, String sign) {
if (n < 9) {
return sign.join([1].repeat(n));
}
value anti = (sign == "+") then "-" else "+";
value root = ((n^0.5) + 0.5).integer;
return "(" + p(root, "+") + ")^(1+1)" +
( (root^2 < n) then sign + p(n - root^2, sign) else
((n < root^2) then anti + p(root^2 - n, anti) else ""));
}
Код имеет длину 487, поэтому еще есть место для дальнейшей оптимизации. (Есть также много резервов в виде пробелов и длинных имен переменных.)
Подсчет очков:
Total positive: 42652
Average positive:42.652
Total negative: 43653
Average negative: 43.60939060939061
With bonus:39.24845154845155
Overall score: 40.95022577422577
Некоторые примеры выходов:
27: 21: (1+1+1+1+1)^(1+1)+1+1
28: 23: (1+1+1+1+1)^(1+1)+1+1+1
29: 25: (1+1+1+1+1)^(1+1)+1+1+1+1
30: 27: (1+1+1+1+1)^(1+1)+1+1+1+1+1
31: 29: (1+1+1+1+1+1)^(1+1)-1-1-1-1-1
32: 27: (1+1+1+1+1+1)^(1+1)-1-1-1-1
33: 25: (1+1+1+1+1+1)^(1+1)-1-1-1
34: 23: (1+1+1+1+1+1)^(1+1)-1-1
-27: 22: -(1+1+1+1+1)^(1+1)-1-1
-28: 24: -(1+1+1+1+1)^(1+1)-1-1-1
-29: 26: -(1+1+1+1+1)^(1+1)-1-1-1-1
-30: 28: -(1+1+1+1+1)^(1+1)-1-1-1-1-1
-31: 30: -(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
-32: 28: -(1+1+1+1+1+1)^(1+1)+1+1+1+1
-33: 26: -(1+1+1+1+1+1)^(1+1)+1+1+1
-34: 24: -(1+1+1+1+1+1)^(1+1)+1+1
993: 65: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
994: 63: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1-1
995: 61: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1
996: 59: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1
997: 57: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1
998: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1
999: 53: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)
1000: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)+1
-993: 66: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1+1)^(1+1)-1-1-1-1-1
-994: 64: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1+1
-995: 62: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1
-996: 60: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1
-997: 58: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1
-998: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1
-999: 54: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)
-1000: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)-1
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 15: 1+1+1+1+1+1+1+1
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 16: -1-1-1-1-1-1-1-1
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
Как видите, отрицательные всегда на один байт (ведущий -
) длиннее соответствующих положительных.
Основная идея та же, что и в предыдущей программе: найти квадрат рядом с нашим целевым числом и рекурсивно представить его корень и остаток. Но теперь мы допускаем, что наш квадрат также будет немного больше целевого числа, что делает остаток отрицательным. ( +0.5
Можно изменить на другую константу, чтобы настроить алгоритм, но, похоже, я уже достиг оптимального значения - и 0,4, и 0,6 дают худшие результаты.)
Чтобы сделать отрицательные значения отрицательными (и в противном случае иметь ту же структуру, что и положительные, мы передаем оператор sign
нашей рекурсивной функции p
- то есть либо, "+"
либо "-"
. Мы можем использовать это также для соединения в тривиальных случаях (т.е. n <9) что касается остатка, если он положительный, и используйте противоположный знак для остатка, если он отрицательный.
В proof
функции ручки начальный знак (с особым случаем для 0), то p
функция выполняет фактическую работу, с помощью рекурсии.
Третья версия, для Цейлона 1.2
import ceylon.language { S=String, I=Integer,e=expand }
// output a base-proof Ceylon expression for an integer
// (i.e. using only 0 and 1 as digits).
//
// Question: http://codegolf.stackexchange.com/q/58084/2338
// My Answer: http://codegolf.stackexchange.com/a/58122/2338
//
// The goal is to produce an expression as short as possible, with
// the code staying under 512 bytes in length.
//
// This approach is to represent a positive integer as a square
// of a positive integer plus some remainder (where the remainder
// can be negative), and for negative integers replace the + on the
// outer level by -.
S q(I n) =>
n == 0 then "0"
else (n < 0 then "-" + p(-n, "-")
else p(n, "+"));
// cache for values of p
variable Map<[I, S],S> c = map { };
// Transforms a positive number into a base-proof term, using
// the given sign for the summation on the outer level.
S p(I n, S s) {
S v =
// look into the cache
c[[n, s]] else (
// hard-code small numbers
n < 8 then s.join([1].repeat(n)))
else
// do the complicated stuff
(let (a = "+-".replace(s,""))
e(e {
for (x in 2..8) // try these exponents
let (l = (n ^ (1.0 / x)).integer) // \[ sqrt[exp]{n} \] in LaTeX
{ for (r in l:2) // lowerRoot, lowerRoot + 1
if (r > 1)
let (w = r ^ x)
{ if (w-n < n) // avoid recursion to larger or same number
// format the string as r^x + (n-w)
"(" + p(r, "+") + ")^(" + p(x, "+") + ")" +
(w < n then s + p(n - w, s)
else (n < w then a + p(w - n, a)
else ""))
} } })
// and now find the shortest formatted string
.reduce<S>((x, y) => x.size < y.size then x else y))
// this should never happen, but we can't tell the compiler
// that at least some of the iterables are non-empty due to the if clause.
else "";
// this builds a new cache in each step – quite wasteful,
// as this also happens when the value was found in the cache,
// but we don't have more characters remaining.
//// c = map { [n, s] -> v, *c };
///better way:
c = [n,s] in c then c else map{[n,s]->v, *c};
return v;
}
Версия для игры в гольф (то есть комментарии и удаленные пробелы) размещена сверху, ровно в 509 байтах кода.
При этом используется тот же базовый принцип, что и во второй версии, но вместо квадратов он также пытается использовать более высокие степени чисел (пробуя показатели от 2 до 8) и использует самый короткий результат. Он также кэширует результаты, так как в противном случае это было бы неприемлемо медленно для больших номеров со многими рекурсивными вызовами.
Подсчет очков:
Total positive: 36622
Average positive: 36.622
Total negative: 37623
Average negative: 37.58541458541458
With bonus:33.826873126873124
Overall score: 35.22443656343656
Большая конструкция с отступом в середине - это три вложенных итерируемых понимания, внутренние два внутри выражения let. Затем они не передаются, используя функцию расширения дважды, и reduce
функция находит самую короткую из этих строк.
Я подал запрос на функцию, чтобы иметь возможность сделать это в одном понимании.
Внутри понимания мы строим строку из корня r
, показателя степени x
и остатка ( n-w
или w-n
).
let
Выражение и map
функции являются новыми в Цейлоне 1.2. map
можно было бы заменить на HashMap
(для этого потребовалось бы больше символов для импорта, хотя, вероятно, это было бы еще быстрее, поскольку я не буду строить карту новой для каждой новой записи). Эти let
выражения , как let (w = r ^ x)
могли бы быть заменены с помощью if
оговорки , как if(exists w = true then r ^ x)
(и тогда я не нуждался бы в двух expand
вызовов либо), но это все равно будет немного больше, не вписывается в 511 разрешенных байтов.
Вот пример выходных данных, соответствующих выбранным выше, все они, за исключением действительно небольших чисел, короче:
27: 15: (1+1+1)^(1+1+1)
28: 17: (1+1+1)^(1+1+1)+1
29: 19: (1+1+1)^(1+1+1)+1+1
30: 21: (1+1)^(1+1+1+1+1)-1-1
31: 19: (1+1)^(1+1+1+1+1)-1
32: 17: (1+1)^(1+1+1+1+1)
33: 19: (1+1)^(1+1+1+1+1)+1
34: 21: (1+1)^(1+1+1+1+1)+1+1
-27: 16: -(1+1+1)^(1+1+1)
-28: 18: -(1+1+1)^(1+1+1)-1
-29: 20: -(1+1+1)^(1+1+1)-1-1
-30: 22: -(1+1)^(1+1+1+1+1)+1+1
-31: 20: -(1+1)^(1+1+1+1+1)+1
-32: 18: -(1+1)^(1+1+1+1+1)
-33: 20: -(1+1)^(1+1+1+1+1)-1
-34: 22: -(1+1)^(1+1+1+1+1)-1-1
993: 39: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1-1
994: 37: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1
995: 35: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1
996: 33: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1
997: 31: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1
998: 29: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1
999: 27: ((1+1+1)^(1+1)+1)^(1+1+1)-1
1000: 25: ((1+1+1)^(1+1)+1)^(1+1+1)
-993: 40: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1+1
-994: 38: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1
-995: 36: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1
-996: 34: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1
-997: 32: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1
-998: 30: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1
-999: 28: -((1+1+1)^(1+1)+1)^(1+1+1)+1
-1000: 26: -((1+1+1)^(1+1)+1)^(1+1+1)
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 13: (1+1)^(1+1+1)
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 14: -(1+1)^(1+1+1)
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
Например, теперь у нас есть 1000 = (3 ^ 2 + 1) ^ 3 вместо 1000 = (6 ^ 2-4) ^ 2-5 ^ 2 + 1.
0
или1
по умолчанию?