Определяющий вызов оптимизации


13

Рассмотрим 30 на 30 матриц Теплица, все записи которых равны 0 или 1. Эта задача представляет собой простую задачу оптимизации, чтобы найти матрицу с наибольшим возможным определителем.

Вход Нет

Выведите матрицу Теплица 30 на 30, все записи которой равны 0 или 1 вместе с определителем.

Оценка Определитель матрицы, которую вы выводите. Если два человека получают одинаковый результат, выигрывает первый ответ.

Ведущие записи пока

  • 65 455 857 159 975 в Matlab Ника Алжера (примерно (10 ^ 13,8)
  • 65 455 857 159 975 в Python от Исаака (примерно 10 ^ 13,8)
  • 39,994,961,721,988 в Mathematica к 2012 году (примерно 10 ^ 13,6)
  • 39,788,537,400,052 в R от Flounderer (примерно 10 ^ 13,6)
  • 8,363,855,075,832 в Python от Vioz- (примерно 10 ^ 12,9)
  • 6 984 314 690 903 в Юлии Алексеем А. (примерно 10 ^ 12,8)

Раздражают дополнительные ограничения 16 июля 2015

Если это вообще возможно, пожалуйста, используйте произвольную арифметику или прецизионную арифметику для вычисления окончательного выходного определителя, чтобы мы могли быть уверены, что это на самом деле (оно всегда должно быть целым числом). В питоне это должно быть полезно.


Я удивлен, что эта проблема еще не решена. Известен ли ответ для циркулянтных матриц?
xnor

1
@NickAlger Если библиотека общедоступна, вы можете использовать ее.
orlp

2
@immibis К сожалению, их 2 ^ 59.

1
Интересно, что два независимых метода позволили получить матрицу Теплица с точным определителем матрицы циркулянта. У меня нет математической интуиции относительно того, почему этот детерминант является общим для двоичных матриц Теплица?
lirtosiast

1
@ Min_25 у меня должно быть максимум до 19 к завтрашнему дню. Получите код / ​​значения для вас в соответствующем вопросе, Лембик. С помощью эвристических алгоритмов я достиг максимума при тех же самых значениях для n = 30, что и два других автора. Несколько раз с рандомизацией. Также с циркулянтными матрицами в результате каждый раз, когда я достигаю этого максимума, хотя мой поиск не ограничивается циркулянтными матрицами. Кстати, еще один сбивающий с толку (для меня) факт: максимум для n = 15 ровно 2 ^ 17.
Рето Коради

Ответы:


11

Matlab, 65 455 857 159 975 (10 ^ 13,8159)

Метод - градиентное восхождение во внутренней части куба [0,1] ^ 59, со многими случайными начальными догадками и округлением в конце, чтобы получить все нули и единицы.

Матрица:

0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0
0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1
1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1
1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1
1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0
0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1
1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1
1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1
1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0
0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1
1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0
0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0
0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0
0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1
1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0   0
0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1   0
0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0   1
1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1   0
0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1   1
1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0   1
1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1   0
0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0   1
1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0   0
0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0   0
0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0   0
0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1   0
0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1   1
1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1   1
1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0   1
1   1   1   0   0   0   0   1   0   1   1   0   1   0   0   1   0   0   0   1   0   1   1   1   0   1   1   1   0   0

Код:

% Toeplitz 0-1 determinant optimization

n = 30;
m = n + n-1;

toeplitz_map = @(w) toeplitz(w(n:-1:1), w(n:end));

objective = @(w) det(toeplitz_map(w));

detgrad = @(A) det(A)*inv(A)';

toeplitz_map_matrix = zeros(n^2,m);
for k=1:m
    ek = zeros(m,1);
    ek(k) = 1;
    M = toeplitz_map(ek);
    toeplitz_map_matrix(:,k) = M(:);
end

gradient = @(w) (reshape(detgrad(toeplitz_map(w)),1,n^2)*...
                 toeplitz_map_matrix)';

%check gradient with finite differences
w = randn(m,1);
dw = randn(m,1);
s = 1e-6;
g_diff = (objective(w+s*dw) - objective(w))/s;
g = gradient(w)'*dw;
grad_err = (g - g_diff)/g_diff

warning('off')
disp('multiple gradient ascent:')
w_best = zeros(m,1);
f_best = 0;
for trial=1:100000
    w0 = rand(m,1);
    w = w0;
    alpha0 = 1e-5; %step size
    for k=1:20
        f = objective(w);
        g = gradient(w);
        alpha = alpha0;
        for hh=1:100
            w2 = w + alpha*g;
            f2 = objective(w2);
            if f2 > f
                w = w2;
                break;
            else
                alpha = alpha/2;
            end
        end

        buffer = 1e-4;
        for jj=1:m
            if (w(jj) > 1)
                w(jj) = 1 - buffer;
            elseif (w(jj) < 0)
                w(jj) = 0 + buffer;
            end
        end
    end

    w = round(w);
    f = objective(w);
    if f > f_best
        w_best = w;
        f_best = f;
    end
    disp(trial)
    disp(f_best)
    disp(f)
end

M = toeplitz_map(w_best);

Математика за вычислением градиента:

В поэлементном внутреннем произведении (т. Е. Внутреннем произведении Гильберта-Шмидта) у градиента определителя есть представитель Рисса G, определяемый как

G = det (A) A ^ (- *).

Карта J от переменных оптимизации (диагональных значений) до матриц Теплица является линейной, поэтому общий градиент g представляет собой композицию этих двух линейных карт,

g = (vec (G) * J) ',

где vec () - оператор векторизации, который берет матрицу и разворачивает ее в вектор.

Внутренний градиент подъема:

После этого все, что вам нужно сделать, это выбрать начальный вектор диагональных значений w_0, и для некоторых маленьких размеров шага альфа-итерация:

  1. w_proposed = w_k + alpha * g_k

  2. чтобы получить w_ (k + 1), возьмите w_proposed и обрежьте значения вне [0,1] до 0 или 1

  3. повторите до тех пор, пока не будете удовлетворены, затем округлите все до 0 или 1.

Мой результат достиг этой детерминанты после примерно 80 000 испытаний с одинаковыми случайными начальными догадками.


Ссылка OEIS, которую вы дали, была для циркулянтных матриц, которые являются частным случаем матриц Топелица. Так что лучше все еще возможно.
Исаак

@isaacg А также очень вероятно!

Да, конечно, я был не прав по этому поводу. Я отредактировал свой пост, чтобы исправить это.
Ник Алджер

1
Да, он достиг этого значения на итерации 250 и оставался там в течение 100000 итераций. Вектор, определяющий матрицу теплица 18x18 с определителем 2994003, был [0,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,1,0, 0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0], где ордер идет снизу слева вверху справа.
Ник Алджер

2
Я наградил вас победой, когда вы выдвинули новую идею и пришли к самому большому количеству в первую очередь IIRC. Да, и это показывает, почему ваш ответ работает math.stackexchange.com/questions/1364471/… .

11

Python 2 с Numpy, 65 455 857 159 975 ~ = 10 ^ 13,8

Это восхождение на гору, настолько простое, насколько это возможно. Окончательный расчет определителя выполняется с использованием SymPy, чтобы получить точный результат. Все матрицы, найденные с этим определителем, циркулянтны.

Матрицы, найденные с этим определителем, даны как значение диагонали снизу слева вверху справа:

01000100101101000011100111011101000100101101000011100111011
01011101110011100001011010010001011101110011100001011010010
01100001000111011101001110100101100001000111011101001110100
01110100111010010110000100011101110100111010010110000100011
01011101110001000011010010111001011101110001000011010010111
01000101100010110100111101110001000101100010110100111101110
01000100101101000011100111011101000100101101000011100111011

Первый, как матрица:

[[1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1]
 [1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1]
 [1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0]
 [0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1]
 [1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1]
 [1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1]
 [1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0]
 [0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0]
 [0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1]
 [1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1]
 [1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1]
 [1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0]
 [0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0]
 [0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0]
 [0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0]
 [0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1]
 [1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0]
 [0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1]
 [1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1]
 [1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0]
 [0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1]
 [1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0]
 [0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0]
 [0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1]
 [1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0]
 [0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0]
 [0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0]
 [0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1]
 [1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0]
 [0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1]]

Код:

import numpy as np
import sympy as sp
import random
import time
SIZE = 30

random.seed(0)

def gen_diag():
    return [random.randint(0, 1) for i in range(SIZE*2 - 1)]

def diag_to_mat(diag):
    return [diag[a:a+SIZE] for a in range(SIZE-1, -1, -1)]

def diag_to_det(diag):
    matrix = diag_to_mat(diag)
    return np.linalg.det(matrix)

def improve(diag):
    old_diag = diag
    really_old_diag = []
    while really_old_diag != old_diag:
        really_old_diag = old_diag
        for flip_at in range(SIZE * 2 - 1):
            new_diag = old_diag[:]
            new_diag[flip_at] ^= 1
            old_diag = max(old_diag, new_diag, key=diag_to_det)
    return old_diag

overall_best_score = 0
time.clock()
while time.clock() < 500:
    best = improve(gen_diag())
    best_score = diag_to_det(best)
    if best_score > overall_best_score:
        overall_best_score = best_score
        overall_best = best
        print(time.clock(), sp.Matrix(diag_to_mat(overall_best)).det(), ''.join(map(str,overall_best)))


mat = diag_to_mat(overall_best)

sym_mat = sp.Matrix(mat)

print(overall_best)
print(sym_mat.det())

1
Это чокнутый. Хорошо сделано.
Алекс А.

.227 немного волнует. Как вы думаете, есть способ быть уверенным в том, что на самом деле является определяющим фактором?

Похоже, что stackoverflow.com/questions/6876377/… может помочь оценить окончательный определитель?

@Lembik Спасибо - SymPy добились цели.
Исаак

Это действительно здорово!

10

R 39 788 537 400 052

Вот моя попытка сделать генетический алгоритм, но только с бесполым размножением. Надеюсь, я правильно понял задачу. Изменить: немного ускорил, попробовал другое случайное семя, и ограничен до 100 поколений.

    options(scipen=999)

toeplitz <- function(x){
# make toeplitz matrix with first row
# x[1:a] and first col x[(a+1):n]
# where n is the length of x and a= n/2
# Requires x to have even length
#
# [1,1] entry is x[a+1]

N <- length(x)/2
out <- matrix(0, N, N)
out[1,] <- x[1:N]
out[,1] <- x[(N+1):length(x)]
for (i in 2:N){
  for (j in 2:N){
    out[i,j] <- out[i-1, j-1]
  }
} 

out
}

set.seed(1002)

generations <- 100
popsize <- 25
cols <- 60
population <- matrix(sample(0:1, cols*popsize, replace=T), nc=cols)
numfresh <- 5 # number of totally random choices added to population

for (i in 1:generations){

fitness <- apply(population, 1, function(x) det(toeplitz(x)) )
mother <- which(fitness==max(fitness))[1]

population <- matrix(rep(population[mother,], popsize), nc=cols, byrow=T)
for (i in 2:(popsize-numfresh)){
  x <- sample(cols, 1)
  population[i,x] <- 1-population[i,x]
}
for (i in (popsize-numfresh +1):popsize){
  population[i,] <- sample(0:1, cols, replace=T)
}


print(population[1,])
print(fitness[mother])
print(det(toeplitz(population[1,]))) # to check correct

}

Выход:

print(population[1, 1:(cols/2)]) # first row
print(population[1, (cols/2+1):(cols)]) # first column (overwrites 1st row)

to <- toeplitz(population[1,])

for (i in 1:(cols/2)) cat(to[i,], "\n")

1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 
0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 
1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 
0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 
0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 
0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 
1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 
1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 
1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 
0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 
1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 
1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 
1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 
0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 
0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 
0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 
1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 
0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 
0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 
1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 
0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 
0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 
1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 
0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 
1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 
1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 

Это очень мило. Вы выиграли долгий путь в настоящее время.

Больше нет :)

3

Юлия, 6,984,314,690,902,998

Это просто создает 1 000 000 случайных тёплицевых матриц и проверяет их детерминанты, записывая максимальное количество обнаруженных. Надеюсь, кто-нибудь придумает элегантное аналитическое решение, а пока ...

function toeplitz(a, b)
    n = length(a)
    T = Array(Int, n, n)
    T[1,:] = b
    T[:,1] = a
    for i = 2:n
        T[i,2:n] = T[i-1,1:n-1]
    end
    T
end

d = 0
A = Any[]

for i = 1:1000000
    # Construct two random 0,1 arrays
    r1 = rand(0:1, 30)
    r2 = rand(0:1, 30)

    # Compute the determinant of a toeplitz matrix constructed
    # from the two random arrays
    D = det(toeplitz(r1, r2))

    # If the computed determinant is larger than anything we've
    # encountered so far, add it to A so we can access it later
    D > d && begin
        push!(A, (D, r1, r2))
        d = D
    end
end

M,N = findmax([i[1] for i in A])

println("Maximum determinant: ", M, "\n")
println(toeplitz(A[N][2], A[N][3]))

Вы можете просмотреть вывод здесь .


Интересно, насколько точен расчет детерминанта. Я полагаю, что основные вычисления выполняются с двойной точностью? Поскольку цифры после десятичной точки равны 0,998, вероятно, есть вероятность, что ближайшее целое число все еще является правильным определителем. Как правило, вы начнете получать проблемы точности с плавающей запятой при применении вычислений определителя общего назначения, например, на основе стандартного разложения LR, к этим матрицам, как только они станут достаточно большими.
Рето Коради

@RetoKoradi Похоже, он использует разложение LU, чтобы получить определитель.
Алекс А.

3

Mathematica, 39,994,961,721,988 (10 ^ 13,60)

Простой метод имитации отжига; нет оптимизации или настройки пока.

n = 30;
current = -\[Infinity];
best = -\[Infinity];
saved = ConstantArray[0, {2 n - 1}];
m := Array[a[[n + #1 - #2]] &, {n, n}];
improved = True;
iters = 1000;
pmax = 0.1;
AbsoluteTiming[
 While[improved || RandomReal[] < pmax,
   improved = False;
   a = saved;
   Do[
    Do[
      a[[i]] = 1 - a[[i]];
      With[{d = Det[m]},
       If[d > best,
          best = d;
          current = d;
          saved = a;
          improved = True;
          Break[];,
          If[d > current || RandomReal[] < pmax (1 - p/iters),
           current = d;
           Break[];,
           a[[i]] = 1 - a[[i]];
           ]
          ];
        ;
       ],
      {i, 2 n - 1}];,
    {p, iters}];
   ];
 ]
best
Log10[best // N]
a = saved;
m // MatrixForm

Пример вывода:

{20.714876,Null}
39994961721988
13.602
(1  1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0
0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0
0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0
0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0
0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1
1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0
0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0
0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0
0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0
0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1
1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1
1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0
0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1
1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1
1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1   0
0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1   1
1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1   1
1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0   1
1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1   0
0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1   1
1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0   1
1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0   0
0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0   0
0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0   0
0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1   0
0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0   1
1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1   0
0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1   1
1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1   1
1   1   0   1   0   0   0   0   1   1   0   1   1   1   0   1   1   0   1   1   0   0   0   0   1   0   0   0   0   1

)

1

Python 2, 8 363 855 075 832

Это очень простая, почти несуществующая стратегия.

from scipy import linalg

start = 2**28
mdet  = 0
mmat  = []
count = 0
powr  = 1
while 1:
 count += 1
 v = map(int,bin(start)[2:].zfill(59))
 m = [v[29:]]
 for i in xrange(1,30):
     m += [v[29-i:59-i]]
 d = 0
 try: d = linalg.det(m, check_finite=False)
 except: print start
 if d > mdet:
     print d
     print m
     mdet = d
     mmat = m
     start += 1
     powr = 1
 else:
     start += 2**powr
     powr += 1
     if start>(2**59-1):
         start-=2**59-1
         powr = 1
 if count%10000==0: print 'Tried',count

Вот лучшая матрица, найденная после ~ 5 580 000 попыток:

1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0
1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1
1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1
1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1
0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0
1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1
0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0
1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1
1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0
0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1
0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1
1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1
1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0
1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1
1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1
0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0
1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1

Все еще работает...

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.