Хасивокакеро: Построй мосты!


19

Hashiwokakero («строить мосты» на японском языке) - это головоломка, в которой вам поручено соединить группу островов с мостами. Правила таковы:

  1. Мосты должны проходить вертикально или горизонтально между двумя островами.
  2. Мосты не могут пересекаться друг с другом.
  3. Пара островов может быть соединена не более чем двумя параллельными мостами.
  4. Каждый остров обозначен номером от 1 до 8 включительно. Количество мостов, соединенных с островом, должно соответствовать количеству на этом острове.
  5. Мосты должны соединять острова в единую связанную группу.

Ваша задача - написать программу, которая будет решать головоломки Hashiwokakero.

Вы можете предположить, что любая заданная головоломка разрешима и что существует только одно решение.

Программа должна быть достаточно эффективной. Например, решение головоломки размером 25x25, представленной ниже, не должно занимать более 10 минут на среднем ПК и не должно занимать более гигабайта памяти. Решение небольших головоломок, таких как 7x7, занимает несколько секунд.

Входные данные:

Головоломка будет предоставлена в качестве карты 2D символов, с цифрами 1на 8представляющих острова, и пространств , представляющих воду. Строки будут дополнены пробелами, если необходимо, чтобы они были одинаковой длины.

Острова всегда будут разделены по горизонтали и вертикали как минимум одним квадратом воды, чтобы между ними было место для размещения потенциального моста. В головоломке всегда будет как минимум два острова.

Желательно, чтобы ваша программа считывала карту головоломки из стандартного ввода, но вы можете указать альтернативный метод ввода, если этого требует ваш язык программирования.

Выход:

Выходные данные должны быть такими же, как входные, за исключением случаев, когда пробелы заменяются мостами по мере необходимости. Мосты должны быть нарисованы с использованием символов рисования Unicode box (U + 2500), (U + 2502), (U + 2550) и (U + 2551) для представления горизонтальных и вертикальных одинарных и двойных мостов.

Если символы Unicode являются проблемой, вы можете использовать символы ASCII -, |, =и Hвместо этого.

Критерии победы:

Это код гольф. Победит самое короткое правильное и достаточно эффективное решение.

Примеры:

Головоломка (7х7):

2 2  1 
 1  4 3
3  2   
    4  
 3 2  3
1      
 3  4 2

Решение:

2─2──1
│1──4─3
3──2║ ║ 
│  │4 ║
│3─2║ 3
1║  ║ │
 3──4─2

Головоломка (25х25):

2 2 2  2  1 1 2 2  2  2 2 
           1 3 5  4  4 2  
2  2 4 5  5 4 2 2  1    3 
  2   1  1 3 3 2       2  
   3 4 4  4 4 5 4 3  2  3 
2 4 5 4            2   3  
 2 1   4 2  4 3   1  1  2 
2 1 3     1  1  6  4   2  
 3 2  4  3  6 3         2 
2 2 3  3  2     5 2  4 3  
 2 1               1    2 
  1 3 3 3 3 5 8 7 6  5 4  
2  3   1 1 2              
 1   1  5 1   4 5 6 3 1 2 
1   1  2    2        3 4  
 3 5 4  4  3  3 8 7 5 1 2 
2      3  1 2  2     1 1  
 2      2  2  2 5 7 6 3 3 
3  3 6 3  5 3  2   2 2 3  
 2            1 2 3 2   2 
3  4 6  4 5 5  3 3 5  1   
 2    1    2 2  1   1  3  
2    1    1 2 3  6 5 2  2 
 2 3  4 4  4 2         1  
2 2  2 2  2 2 2  1  1 3 2 

Решение:

2─2─2──2  1 1─2─2──2──2─2
│      │  │1─3═5══4══4─2│
2  2─4─5══5═4═2│2──1 │ │3
│ 2│ ║1│ 1─3═3─2│    │ 2║
│ ║3═4│4══4─4═5─4─3──2 │3
2 4═5─4│  │ │ ║ │ │2───3│
│2─1║ ║4─2│ 4─3 │ 1│ 1 │2
2│1─3 ║║ │1 ║1──6══4 │ 2│
│3─2──4║ 3══6─3 ║  │ │ │2
2│2═3 │3──2 │ ║ 5─2│ 4─3│
│2─1│ │   │ │ ║ ║ │1 ║ │2
│ 1─3─3─3─3─5═8═7═6──5═4│
2──3───1│1─2│ ║ │ ║    ││
 1 │ 1──5─1││ 4─5─6─3─1│2
1│ │1──2║  │2 │ ║ ║ │3═4│
│3─5═4 │4──3│ 3═8═7═5│1│2
2│ │ ║ 3│ 1│2──2║ │ ║1│1│
│2 │ ║ ║2 │2──2│5═7═6─3─3
3│ 3─6─3│ 5═3 │2│ ║2│2─3│
║2 │ ║  │ ║ │ 1│2─3║2│ ║2
3│ 4═6──4─5─5──3─3─5││1║│
│2 │ │1 │ │2║2──1│ ║1││3│
2│ │ 1│ │ 1║2│3══6═5─2││2
│2─3──4═4──4─2│  │    │1│
2─2──2─2──2─2─2  1  1─3─2

Дополнительные головоломки можно найти здесь .


Есть ли вариант, что ввод невозможно решить?
Хаулет

@ Хаулет: Вы можете предположить, что любая заданная головоломка разрешима и что есть только одно решение.
Хаммар

Ой, я этого не видел. Моя вина.
Хаулет

Есть ли минимальный размер головоломки или количество узлов, или нам нужно беспокоиться о странных случаях, таких 1 1как ввод?
captncraig

@CMP: явного минимума не существует, хотя правила подразумевают, что не существует головоломки меньшего размера, чем 1 1, которая является действительной головоломкой, и с ней нужно обращаться правильно.
Хаммар

Ответы:


10

Haskell, 1074 персонажа

main=interact$unlines.(\f@(l:_)->let a=(length l,length f)in head.filter(網(0,0)a).計(0,0)a$f).lines
橋=結"─═"数;結=zip;網 置@(右,下) 域@(幅,高) 地|下>=高=實|右>=幅=網(0,下+1)域 地|目 置 地`含`島
 =折((&&).折((&&).not.(`含`島))實)實(潔 置 域 地)|實=網(右+1,下)域 地
導=[(種,動)|動<-[1,-1],種<-"─═│║"];潔 置 域 地=折(拡 置 域)(換 地 置 '0')導
拡 置 域(種,動)地|([地],置)<-続(行 置 種 動)域 種 動 種 地=潔 置 域 地|實=地
計 置@(右,下)域@(幅,高)地|下>=高=[地]|右>=幅=計(0,下+1)域 地|[価]<-目 置 地`価`島
 =見込(価-環 置 域 地)>>=折(\種->(fst.続(行 置 種 1)域 種 1' '=<<))[地]>>=計(右+1,下)域
 |實=計(右+1,下)域 地;見込 価|価<0=[]|価>4=[]|實=[[""],["─","│"],["─│","║","═"],["─║","═│"],["═║"]]!!価
続 置 域 種 動 空 地|存 置 域=建 置 域 種 動 空 地|實=([],置)
建 置 域 種 動 空 地|目 置 地`含`島=([地],置)|目 置 地==空=続(行 置 種 動)域 種 動 空(換 地 置 種)
 |實=([],置);存(右,下)(幅,高)|右>=0,幅>右,0<=下=高>下|實=not 實;環 置 域 地=折(環行 置 域 地)0導
環行 置 域 地(種,動)数|置<-行 置 種 動,存 置 域,事<-目 置 地,事==種,[価]<-事`価`(橋++桥)=数+価|實=数
行(右,下)種 数|種`含`橋=(右+数,下)|實=(右,下+数);目(右,下)地=地!!下!!右;島=結"12345678"数
換 地(右,下)事|(上に,線:下に)<-捌 下 地,(左,古:右)<-捌 右 線=上に++(左++(事:右)):下に
折=foldl.flip;捌 0覧=([],覧);捌 数(物:覧)|(一覧,他)<-捌(数-1)覧=(物:一覧,他);實=1>0;数=[1..]
価 _[]=[];価 事((物,数):覧)|事==物=[数]|實=価 事 覧;含 事 覧|[_]<-価 事 覧=實|實=1<0;桥=結"│║"数


Первоначально у меня это было еще более чисто по-японски, так как я реализовал примитивные функции с точки зрения простого сопоставления с образцом и списков:

Хаскелл, 1192

main=interact$unlines.(\f@(l:_)->let a=(length l,length f)in head.filter(網(0,0)a).計(0,0)a$f).lines
橋=結合"─═"数;結合 []_=[];結合(事:覧)(物:一覧)=(事,物):結合 覧 一覧
網 置@(右,下) 域@(幅,高) 地|下>=高=實|右>=幅=網(0,下+1)域 地|目 置 地`含`島
 =折る((&&).折る((&&).反対.(`含`島))實)實(潔 置 域 地)|實=網(右+1,下)域 地
導=[(種,動)|動<-[1,-1],種<-"─═│║"];潔 置 域 地=折る(拡 置 域)(換 地 置 '0')導
拡 置 域(種,動)地|([地],置)<-続(行 置 種 動)域 種 動 種 地=潔 置 域 地|實=地
計 置@(右,下)域@(幅,高)地|下>=高=[地]|右>=幅=計(0,下+1)域 地|[価]<-目 置 地`価`島
 =見込(価-環 置 域 地)>>=折る(\種->(一.続(行 置 種 1)域 種 1' '=<<))[地]>>=計(右+1,下)域
 |實=計(右+1,下)域 地;見込 価|価<0=[]|価>4=[]|實=[[""],["─","│"],["─│","║","═"],["─║","═│"],["═║"]]!!価
続 置 域 種 動 空 地|存 置 域=建 置 域 種 動 空 地|實=([],置)
建 置 域 種 動 空 地|目 置 地`含`島=([地],置)|目 置 地==空=続(行 置 種 動)域 種 動 空(換 地 置 種)
 |實=([],置);存(右,下)(幅,高)|右>=0,幅>右,0<=下=高>下|實=反対 實;環 置 域 地=折る(環行 置 域 地)0導
環行 置 域 地(種,動)数|置<-行 置 種 動,存 置 域,事<-目 置 地,事==種,[価]<-事`価`結 橋 桥=数+価|實=数
行(右,下)種 数|種`含`橋=(右+数,下)|實=(右,下+数);一(第,第二)=第;目(右,下)地=地!!下!!右;島=結合"12345678"数
換 地(右,下)事|(上に,線:下に)<-捌 下 地,(左,古:右)<-捌 右 線=結 上に(結 左(事:右):下に);変 関[]=[]
変 関(物:覧)=関 物:変 関 覧;折る 関 物[]=物;折る 関 物(事:覧)=折る 関(関 事 物)覧;捌 0覧=([],覧)
捌 数(物:覧)|(一覧,他)<-捌(数-1)覧=(物:一覧,他);實=1>0;反対 真|真=1<0|實=實;数=[1..];結=(++)
価 _[]=[];価 事((物,数):覧)|事==物=[数]|實=価 事 覧;含 事 覧|[_]<-価 事 覧=實|實=1<0;桥=結合"│║"数



$ make ;   def0 +RTS -M1g < test-25x25.txt
ghc -o bin/def0 golfed0.hs -rtsopts -O2
[1 of 1] Compiling Main             ( golfed0.hs, golfed0.o )
Linking bin/def0 ...
2─2─2──2  1 1─2─2──2──2─2
│      │  │1─3═5══4══4─2│
2  2─4─5══5═4═2│2──1 │ │3
│ 2│ ║1│ 1─3═3─2│    │ 2║
│ ║3═4│4══4─4═5─4─3──2 │3
...

работает на ≈3 минут на моем i5 .


Комментируемая версия:

type Board = [[Char]]
type Location = (Int,Int)
type BoardDimensions = (Int,Int)

main=interact$unlines.(\f@(l:_)
  ->let a=(length l,length f)  -- dimensions of the field from the input
     in head.filter(網(0,0)a)   --   ↙−   determine all possible ways to build bridges
  {-                ↑      -}   .計(0,0)a $ f                                         ).lines
     -- and use the first that is simply connected. 


 --  islands,            bridges
島=結合"12345678"数;  橋=結合"─═"数;  桥=結合"│║"数;               数=[1..]
 -- each with the associated "value" from the natural numbers _↗



     -- plan & commit the building of bridges
計 :: Location -> BoardDimensions -> Board -> [Board]
計    置@(右,下)   域@(幅,高)          地
 |下>=高=[地]        -- Walk over the board until every location was visited.
 |右>=幅=計(0,下+1)域 地
 |[価]<-目 置 地`価`島      -- When there is an island, read it's "value" 価
    =見込(価-環 置 域 地)  -- substract the value of the already-built bridges; fetch the ways to build bridges with the remaining value
     >>=折る(\種->(一.続(行 置 種 1)域 種 1' '=<<))[地]  -- for each of these ways, try to build a bridge.
      >>=計(右+1,下)域    -- for every possibility where that was successful, go on with the resultant board.
 |實=計(右+1,下)域 地

  -- Ways to build bridges with value 価:
見込 :: Int -> [[Char]]
見込    価
 |価<0=[]   -- not possible to build bridges with negative value
 |価>4=[]   -- nor with value >4  (we're always building south- / eastwards)
 |實=[ [""]      -- value 0
     ,["─","│"]  -- value 1
     ,["─│","║","═"],["─║","═│"],["═║"]]!!価  -- ... and so on

 -- continue, if Location is on the board, with the building of a bridge of type 種
続 :: Location -> BoardDimensions -> Char -> Int -> Char -> Board -> ([Board],Location)
続    置          域                  種      動      空      地
 |存 置 域=建 置 域 種 動 空 地
 |實=([],置)

      -- build that bridge, 
建 :: Location -> BoardDimensions -> Char -> Int -> Char -> Board -> ([Board],Location)
建    置          域                  種      動      空      地
 |目 置 地`含`島=([地],置)  -- but if we've reached an island we're done
 |目 置 地==空 -- if we're in water or what else (空, can also take on the value of 種 if we only want to check if the bridge is already there)
    =続(行 置 種 動)域 種 動 空(換 地 置 種) -- place (換) the bridge and go (行く) to the next location
 |實=([],置)  -- if we've reached something else (i.e. crossing bridges), return no result.

     -- number of connections present at location 置
環 :: Location -> BoardDimensions -> Board -> Int
環 置 域 地=折る(環行 置 域 地)0導  -- for all neighbouring positions
環行 置 域 地(種,動)数
 |置<-行 置 種 動,存 置 域   -- if they're on the board
 ,事<-目 置 地,事==種    --   and there's a bridge in the correct direction
 ,[価]<-事`価`結 橋 桥=数+価  -- check its value and sum it to the previous ones
 |實=数   -- if there's no bridge there, don't sum anything


導=[(種,動)|動<-[1,-1],種<-"─═│║"]     -- directions to go

--     --     --     --     --     --     --     --     --     --     --     --

     -- test for connectedness:
網 :: Location -> BoardDimensions -> Board -> Bool
網    置@(右,下)      域@(幅,高)         地      -- Walk over the board until an island is
 |下>=高=實                                    -- found. 潔 marks all islands connected to
 |右>=幅=網(0,下+1)域 地                        -- that island; then check if any unmarked
 |目 置 地`含`島=折る((&&).折る((&&).反対.(`含`島))實)實(潔 置 域 地)  -- islands are left in the
 |實=網(右+1,下)域 地                                                          -- result.

         -- mark islands connected to the one at 置:
潔 :: Location -> BoardDimensions -> Board -> Board
潔    置           域                 地    =折る(拡 置 域)(換 地 置 '0')[(種,動)|動<-[1,-1],種<-"─═│║"]
 -- mark the island at 置 with '0', then, for all the possible ways to go...
     -- Proceed with the marking in some direction
拡 :: Location -> BoardDimensions -> (Char,Int) -> Board -> [[Char]]
拡 置 域(種,動)地     -- if an island is found in the given direction, give control to 潔 there
 |([地],置)<-続(行 置 種 動)域 種 動 種 地=潔 置 域 地
 |實=地   -- if none is found (i.e. there was no bridge), just return the board without further marking


--     --     --     --     --     --     --     --     --     --     --     --
-- Primitives:

存 :: Location -> BoardDimensions -> Bool
存(右,下)(幅,高)|右>=0,幅>右,0<=下=高>下|實=反対 實  -- check if (右,下) is on the board

行 :: Location -> Char->Int -> Location
行(右,下)種 数|種`含`橋=(右+数,下)|實=(右,下+数)   -- go in some direction (determined by where 種 leads to)

目 :: Location -> Board -> Char
目(右,下)地=地!!下!!右          -- lookup what's at location (右,下)

   -- replace what's at (右,下) with 事
換 :: Board -> Location -> Char -> Board
換 地(右,下)事|(上に,線:下に)<-捌 下 地,(左,古:右)<-捌 右 線=結 上に(結 左(事:右):下に)




変 :: (a -> b) -> [a] -> [b]
変 関[]=[]                       -- Standard Haskell map function (just noticed I didn't actually use it at all)
変 関(物:覧)=関 物:変 関 覧

折る :: (b -> a -> a) -> a -> [b] -> a
折る 関 物[]=物                            -- equivalent 折る=foldl.flip
折る 関 物(事:覧)=折る 関(関 事 物)覧

捌 0覧=([],覧)
捌 数(物:覧)|(一覧,他)<-捌(数-1)覧=(物:一覧,他)   -- splitAt

實=1>0           --true

反対 真|真=1<0|實=實  -- not


結=(++)     -- list linking

一(第,第二)=第    -- fst

価 :: Eq a => a -> [(a,b)] -> [b]
価 _[]=[]                             -- lookup function
価 事((物,数):覧)|事==物=[数]|實=価 事 覧

含 :: Eq a => a -> [(a,b)] -> Bool
含 事 覧|[_]<-価 事 覧=實|實=1<0      -- equivalent 含 x = elem x . map fst


結合 []_=[]                          -- zip
結合(事:覧)(物:一覧)=(事,物):結合 覧 一覧

1
Вау. Не хочешь объяснить, что такое китайский?
Captncraig

1
@CMP: на самом деле он должен быть японским ... не совсем, хотя, я просто искал материал, который, казалось, имел приблизительно правильное значение в Викисловарь. - Хорошо, добавил закомментированную версию кода.
перестал поворачиваться против часовой стрелки

5

Питон, 1079 символов

import sys,re,copy
A=sys.stdin.read()
W=A.find('\n')+1
r=range
V={}
E=[]
for i in r(len(A)):
 if'0'<A[i]<'9':V[i]=int(A[i])
 for d in(1,W):m=re.match('[1-8]( +)[1-8]',A[i::d]);E+=[[i,i+len(m.group(1))*d+d,d,r(3)]]if m else[]
def S(E):
 q,t=0,1
 while q!=t:
  for e in E:
   if any(d[0]and e[3][0]==0and any(i in r(a+c,b,c)for i in r(e[0]+e[2],e[1],e[2]))for a,b,c,d in E):e[3]=[0]
  for i in V:
   m=sum(min(e[3])for e in E if i in e[:2]);n=sum(max(e[3])for e in E if i in e[:2])
   if m>V[i]or n<V[i]:return
   for e in E:
    if m+2>V[i]and i in e[:2]:e[3]=e[3][:V[i]-m+1]
    if n-2<V[i]and i in e[:2]:e[3]=e[3][V[i]-n-1:]
  t=q;q=sum(len(e[3])for e in E)
 Q=[min(V)]
 i=0
 while Q[i:]:
  x=Q[i];i+=1
  for e in E:
   if x in e[:2]:
    if sum(e[3]):
     for y in e[:2]:
      if y not in Q:Q+=[y]
 if len(Q)!=len(V):return
 U=[e for e in E if e[3][1:]]
 if U:
  for w in U[0][3]:U[0][3]=[w];S(copy.deepcopy(E))
 else:
  B=A
  for a,b,c,d in E:
   if d[0]:
    for i in r(a+c,b,c):B=B[:i]+[{1:'─',W:'│'},{1:'═',W:'║'}][d[0]-1][c]+B[i+1:]
  print(B)
  sys.exit(0)
S(E)

Код выполняет довольно простой исчерпывающий поиск S, используя некоторое распространение ограничений, чтобы запустить его в разумные сроки. Eпредставляет текущий набор ребер в формате [от, до, дельта, возможные веса] . от и до являются островными идентификаторами и delta равен 1 для горизонтальных ребер или W (= ширина линий) для вертикальных ребер. возможные весовые коэффициенты - это подсписок [0,1,2], кодирующий текущее известное состояние этого ребра (0 = нет моста, 1 = один мост, 2 = двойной мост).

Sделает три вещи Сначала он распространяет информацию, например, если одно ребро больше не имеет веса 0 в качестве возможности, то все ребра, которые пересекают его, удаляются (их возможные веса устанавливаются в [0]). Точно так же, если сумма минимального веса для ребер, падающих на остров, равна весу острова, то все эти ребра устанавливаются на их минимум.

Во-вторых, Sпроверяет, что граф все еще связан, используя не [0] ребра ( Qвычисление).

Наконец, Sвыбирает ребро, которое все еще не полностью определено, и рекурсивно вызывает себя, устанавливая это ребро в одну из оставшихся возможностей.

Требуется около 2 минут для самого большого примера.


Вы можете потерять некоторых персонажей, используя табуляцию вместо пробелов в некоторых местах и ​​комбинируя некоторые вещи в одну строку (например,print(B);sys.exit(0)
Blazer

Я взломал его и опустил до 1041 символа, все еще работая
Blazer

3

C # - 6601 5661 2225

using System;using System.Collections.Generic;using Google.OrTools.ConstraintSolver;
using System.Linq;namespace A{class N{public int R,C,Q;public bool F;public N(int r,
int c,int q){R=r;C=c;Q=q;}}class E{private static int i;public N A,B;public int I;
public E(N a,N b){A=a;B=b;I=i++;}}class H{public void G(string i){var o=P(i);var g=
new List<E>();foreach(var m in o){var r=o.Where(x=>x.R==m.R&&x.C>m.C).OrderBy(x=>x.C)
.FirstOrDefault();if(r!=null){g.Add(new E(m,r));}var d=o.Where(x=>x.C==m.C&&x.R>m.R)
.OrderBy(x=>x.R).FirstOrDefault();if(d!=null){g.Add(new E(m,d));}}var s=new Solver("H")
;int n=g.Count;var k=s.MakeIntVarArray(n,0,2);foreach(var j in o){var w=j;var y=g.Where
(x=>x.A==w||x.B== w).Select(x=>k[x.I]).ToArray();s.Add(s.MakeSumEquality(y,j.Q));}
foreach(var u in g.Where(x=>x.A.R==x.B.R)){var e=u;var v=g.Where(x=>x.A.R<e.A.R&&x.B.R
>e.A.R&&x.A.C>e.A.C&&x.A.C< e.B.C);foreach (var f in v){s.Add(s.MakeEquality(k[e.I]*k[f.
I],0));}}if(o.Count>2){foreach(var e in g.Where(x=>x.A.Q==2&&x.B.Q==2)){s.Add(k[e.I]<=1)
;}foreach(var e in g.Where(x=>x.A.Q==1&&x.B.Q==1)){s.Add(k[e.I]==0);}}var z=s.MakePhase
(k,0,0);s.NewSearch(z);int c=0;while(s.
NextSolution()){if(C(k,o,g)){N(k,o,g);Console.WriteLine();c++;}}Console.WriteLine(c);}
bool C(IntVar[]t,List<N>d,List<E>g){var a=d[0];a.F=true;var s=new Stack<N>();s.Push(a);
while(s.Any()){var n=s.Pop();foreach(var e in g.Where(x=>x.A==n||x.B==n)){var o=e.A==n?
e.B:e.A;if(t[e.I].Value()>0&&!o.F){o.F=true;s.Push(o);}}}bool r=d.All(x=>x.F);foreach
(var n in d){n.F=false;}return r;}void N(IntVar[]t,IList<N>n,List<E>e){var l=new 
List<char[]>();for(int i=0;i<=n.Max(x=>x.R);i++){l.Add(new string(' ',n.Max(x=>x.C)+1)
.ToCharArray());}foreach(var o in n){l[o.R][o.C]=o.Q.ToString()[0];N d=o;foreach(var 
g in e.Where(x=>x.A==d)){var v=t[g.I].Value();if(v>0){char p;int c;if(g.B.R==o.R){p=v==1
?'─':'═';c=o.C+1;var r=l[o.R];while(c<g.B.C){r[c]=p;c++;}}else{p=v==1?'│':'║';c=o.R+1;
while(c<g.B.R){l[c][o.C]=p;c++;}}}}}foreach(var r in l){Console.WriteLine(new string(r))
;}}List<N>P(string s){var n=new List<N>();int r=0;foreach(var l in s.Split(new[]{'\r',
'\n'},StringSplitOptions.RemoveEmptyEntries)){for(int c=0;c<l.Length;c++){if(l[c]!=' '
){n.Add(new N(r,c,l[c]-'0'));}}r++;}return n;}}}

Не особенно хорошо играли в гольф. Использует библиотеку программирования ограничений из Google or-tools. Создает ограничения для общего числа ребер и для устранения пересекающихся мостов, но немного сложнее определить ограничения, чтобы гарантировать, что они все связаны. Я добавил логику к компонентам обрезки 2 = 2 и 1-1, но мне все еще нужно пройти через окончательный список (39 на большой) и устранить те, которые не полностью связаны. Работает довольно быстро. На самом большом примере занимает всего пару секунд. Ungolfed:

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;
using System.Linq;
namespace Hashi
{
    public class Node
    {
        public int Row, Col, Req;
        public bool Flag;

        public Node(int r, int c, int q)
        {
            Row = r;
            Col = c;
            Req = q;
        }
    }
    public class Edge
    {
        private static int idx = 0;
        public Node A, B;
        public int Index;
        public Edge(Node a, Node b)
        {
            A = a;
            B = b;
            Index = idx++;
        }
    }
    public class HashiSolver
    {
        public void Go(string input)
        {
            IList<Node> nodes = Parse(input);
            var edges = new List<Edge>();
            //add edges between nodes;
            foreach (var node in nodes)
            {
                var r = nodes.Where(x => x.Row == node.Row && x.Col > node.Col).OrderBy(x => x.Col).FirstOrDefault();
                if (r != null)
                {
                    edges.Add(new Edge(node, r));
                }
                var d = nodes.Where(x => x.Col == node.Col && x.Row > node.Row).OrderBy(x => x.Row).FirstOrDefault();
                if (d != null)
                {
                    edges.Add(new Edge(node, d));
                }
            }
            var solver = new Solver("Hashi");
            int n = edges.Count;
            var toSolve = solver.MakeIntVarArray(n, 0, 2);
            //add total node edge total constraints
            foreach (var node in nodes)
            {
                var node1 = node;
                var toConsider = edges.Where(x => x.A == node1 || x.B == node1).Select(x => toSolve[x.Index]).ToArray();
                solver.Add(solver.MakeSumEquality(toConsider, node.Req));
            }
            //add crossing edge constraints
            foreach (var ed in edges.Where(x => x.A.Row == x.B.Row))
            {
                var e = ed;
                var conflicts = edges.Where(x => x.A.Row < e.A.Row &&
                                                 x.B.Row > e.A.Row &&
                                                 x.A.Col > e.A.Col &&
                                                 x.A.Col < e.B.Col);
                foreach (var conflict in conflicts)
                {
                    solver.Add(solver.MakeEquality(toSolve[e.Index] * toSolve[conflict.Index], 0));
                }
            }
            if (nodes.Count > 2)
            {
                //remove 2=2 connections
                foreach (var e in edges.Where(x => x.A.Req == 2 && x.B.Req == 2))
                {
                    solver.Add(toSolve[e.Index] <= 1);
                }
                //remove 1-1 connections
                foreach (var e in edges.Where(x => x.A.Req == 1 && x.B.Req == 1))
                {
                    solver.Add(toSolve[e.Index] == 0);
                }
            }
            var db = solver.MakePhase(toSolve, Solver.INT_VAR_DEFAULT, Solver.INT_VALUE_DEFAULT);
            solver.NewSearch(db);
            int c = 0;
            while (solver.NextSolution())
            {
                if (AllConnected(toSolve, nodes, edges))
                {
                    Print(toSolve, nodes, edges);
                    Console.WriteLine();
                    c++;
                }
            }
            Console.WriteLine(c);
        }
        private bool AllConnected(IntVar[] toSolve, IList<Node> nodes, List<Edge> edges)
        {
            var start = nodes[0];
            start.Flag = true;
            var s = new Stack<Node>();
            s.Push(start);
            while (s.Any())
            {
                var n = s.Pop();
                foreach (var edge in edges.Where(x => x.A == n || x.B == n))
                {
                    var o = edge.A == n ? edge.B : edge.A;
                    if (toSolve[edge.Index].Value() > 0 && !o.Flag)
                    {
                        o.Flag = true;
                        s.Push(o);
                    }
                }
            }
            bool r = nodes.All(x => x.Flag);
            foreach (var n in nodes)
            {
                n.Flag = false;
            }
            return r;
        }
        private void Print(IntVar[] toSolve, IList<Node> nodes, List<Edge> edges)
        {
            var l = new List<char[]>();
            for (int i = 0; i <= nodes.Max(x => x.Row); i++)
            {
                l.Add(new string(' ', nodes.Max(x => x.Col) + 1).ToCharArray());
            }
            foreach (var node in nodes)
            {
                l[node.Row][node.Col] = node.Req.ToString()[0];
                Node node1 = node;
                foreach (var edge in edges.Where(x => x.A == node1))
                {
                    var v = toSolve[edge.Index].Value();
                    if (v > 0)
                    {
                        //horizontal
                        if (edge.B.Row == node.Row)
                        {
                            char repl = v == 1 ? '─' : '═';
                            int col = node.Col + 1;
                            var r = l[node.Row];
                            while (col < edge.B.Col)
                            {
                                r[col] = repl;
                                col++;
                            }
                        }
                        //vertical
                        else
                        {
                            char repl = v == 1 ? '│' : '║';
                            int row = node.Row + 1;
                            while (row < edge.B.Row)
                            {

                                l[row][node.Col] = repl;
                                row++;
                            }
                        }
                    }
                }
            }
            foreach (var r in l)
            {
                Console.WriteLine(new string(r));
            }
        }
        private IList<Node> Parse(string s)
        {
            var n = new List<Node>();
            int row = 0;
            foreach (var line in s.Split(new[] { '\r', '\n' }, StringSplitOptions.RemoveEmptyEntries))
            {
                for (int col = 0; col < line.Length; col++)
                {
                    if (line[col] != ' ')
                    {
                        n.Add(new Node(row, col, line[col] - '0'));
                    }
                }
                row++;
            }
            return n;
        }

    }
}
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.