Американская готика в палитре Моны Лизы: переставьте пиксели


377

Вам дают два изображения истинного цвета, Источник и Палитра. Они не обязательно имеют одинаковые размеры, но гарантируется, что их области одинаковы, то есть имеют одинаковое количество пикселей.

Ваша задача - создать алгоритм, который делает наиболее точную копию источника, используя только пиксели в палитре. Каждый пиксель в палитре должен использоваться ровно один раз в уникальной позиции в этой копии. Копия должна иметь те же размеры, что и источник.

Этот скрипт Python может использоваться для обеспечения соблюдения следующих ограничений:

from PIL import Image
def check(palette, copy):
    palette = sorted(Image.open(palette).convert('RGB').getdata())
    copy = sorted(Image.open(copy).convert('RGB').getdata())
    print 'Success' if copy == palette else 'Failed'

check('palette.png', 'copy.png')

Вот несколько картинок для тестирования. Все они имеют одинаковую площадь. Ваш алгоритм должен работать для любых двух изображений с одинаковыми областями, а не только для американской готики и Моны Лизы. Вы должны, конечно, показать свой вывод.

американская готика Мона Лиза Звездная ночь Крик река радуга

Спасибо Википедии за изображения знаменитых картин.

счет

Это конкурс популярности, поэтому побеждает победитель, получивший наибольшее количество голосов. Но я уверен, что есть много способов проявить креативность с этим!

Анимация

Миллинону пришла в голову мысль, что было бы здорово увидеть, как пиксели перестраиваются. Я тоже так думал, поэтому написал этот скрипт на Python, который берет два изображения одного цвета и рисует промежуточные изображения между ними. Обновление: я только пересмотрел это, таким образом, каждый пиксель перемещает минимальное количество, которое это должно. Это больше не случайно.

Сначала Мона Лиза превращается в американскую готику Адицу. Далее идет американская готика bitpwner (от Моны Лизы), превращающаяся в aditsu. Удивительно, что две версии имеют одинаковую цветовую палитру.

Мона Лиза в американской готической анимации анимация между двумя версиями американской готики из мона лизы

Результаты действительно поразительны. Вот радуга Адицу Мона Лиза (замедленно, чтобы показать детали).

Радужные сферы в анимацию Моны Лизы

Эта последняя анимация не обязательно связана с конкурсом. Он показывает, что происходит, когда мой сценарий используется для поворота изображения на 90 градусов.

анимация вращения дерева


22
Чтобы увеличить количество совпадений по вашему вопросу, вы можете подумать над тем, чтобы дать ему название «Американская готика в палитре Моны Лизы:
переставьте

14
Привет, я просто хочу поздравить тебя с этим оригинальным испытанием! Очень освежающий и интересный.
Болов

6
Я рад, что это не [код-гольф].
Мин-Тан

13
Мой мобильный предел данных получает ужасный ожог каждый раз, когда я захожу на эту страницу.
Векторизовано

5
Связанный: github.com/jcjohnson/neural-style
Vi.

Ответы:


159

Java - GUI с прогрессивным рандомизированным преобразованием

Я перепробовал много вещей, некоторые из которых были очень сложными, а затем я наконец вернулся к этому относительно простому коду:

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Random;

import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.Timer;

@SuppressWarnings("serial")
public class CopyColors extends JFrame {
    private static final String SOURCE = "spheres";
    private static final String PALETTE = "mona";
    private static final int COUNT = 10000;
    private static final int DELAY = 20;
    private static final int LUM_WEIGHT = 10;

    private static final double[] F = {0.114, 0.587, 0.299};
    private final BufferedImage source;
    protected final BufferedImage dest;
    private final int sw;
    private final int sh;
    private final int n;
    private final Random r = new Random();
    private final JLabel l;

    public CopyColors(final String sourceName, final String paletteName) throws IOException {
        super("CopyColors by aditsu");
        source = ImageIO.read(new File(sourceName + ".png"));
        final BufferedImage palette = ImageIO.read(new File(paletteName + ".png"));
        sw = source.getWidth();
        sh = source.getHeight();
        final int pw = palette.getWidth();
        final int ph = palette.getHeight();
        n = sw * sh;
        if (n != pw * ph) {
            throw new RuntimeException();
        }
        dest = new BufferedImage(sw, sh, BufferedImage.TYPE_INT_RGB);
        for (int i = 0; i < sh; ++i) {
            for (int j = 0; j < sw; ++j) {
                final int x = i * sw + j;
                dest.setRGB(j, i, palette.getRGB(x % pw, x / pw));
            }
        }
        l = new JLabel(new ImageIcon(dest));
        add(l);
        final JButton b = new JButton("Save");
        add(b, BorderLayout.SOUTH);
        b.addActionListener(new ActionListener() {
            @Override
            public void actionPerformed(final ActionEvent e) {
                try {
                    ImageIO.write(dest, "png", new File(sourceName + "-" + paletteName + ".png"));
                } catch (IOException ex) {
                    ex.printStackTrace();
                }
            }
        });
    }

    protected double dist(final int x, final int y) {
        double t = 0;
        double lx = 0;
        double ly = 0;
        for (int i = 0; i < 3; ++i) {
            final double xi = ((x >> (i * 8)) & 255) * F[i];
            final double yi = ((y >> (i * 8)) & 255) * F[i];
            final double d = xi - yi;
            t += d * d;
            lx += xi;
            ly += yi;
        }
        double l = lx - ly;
        return t + l * l * LUM_WEIGHT;
    }

    public void improve() {
        final int x = r.nextInt(n);
        final int y = r.nextInt(n);
        final int sx = source.getRGB(x % sw, x / sw);
        final int sy = source.getRGB(y % sw, y / sw);
        final int dx = dest.getRGB(x % sw, x / sw);
        final int dy = dest.getRGB(y % sw, y / sw);
        if (dist(sx, dx) + dist(sy, dy) > dist(sx, dy) + dist(sy, dx)) {
            dest.setRGB(x % sw, x / sw, dy);
            dest.setRGB(y % sw, y / sw, dx);
        }
    }

    public void update() {
        l.repaint();
    }

    public static void main(final String... args) throws IOException {
        final CopyColors x = new CopyColors(SOURCE, PALETTE);
        x.setSize(800, 600);
        x.setLocationRelativeTo(null);
        x.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        x.setVisible(true);
        new Timer(DELAY, new ActionListener() {
            @Override
            public void actionPerformed(final ActionEvent e) {
                for (int i = 0; i < COUNT; ++i) {
                    x.improve();
                }
                x.update();
            }
        }).start();
    }
}

Все соответствующие параметры определены как константы в начале класса.

Программа сначала копирует изображение палитры в исходные размеры, затем повторно выбирает 2 случайных пикселя и меняет их местами, если это приблизит их к исходному изображению. «Ближе» определяется с использованием функции цветового расстояния, которая вычисляет разницу между компонентами r, g, b (взвешенными по яркости) вместе с общей разницей в яркости, с большим весом для яркости.

Формы формируются всего за несколько секунд, а цвета - еще дольше. Вы можете сохранить текущее изображение в любое время. Я обычно ждал около 1-3 минут перед сохранением.

Результаты:

В отличие от некоторых других ответов, все эти изображения были созданы с использованием одинаковых параметров (кроме имен файлов).

Американская готическая палитра

мона-готическом кричать-готическом

Палитра мона лиза

готик-мона кричать-мона сферы-мона

Звездная ночь палитра

мона-ночь кричать ночь сферы ночи

Палитра Крик

готик-Крик мона-Крик ночной крик сферы, визг

Палитра сфер

Я думаю, что это самый сложный тест, и каждый должен опубликовать свои результаты с помощью этой палитры:

готическая-сфера Mona-сферы кричать-сферы

Извините, я не нашел изображение реки очень интересным, поэтому я не включил его.

Я также добавил видео на https://www.youtube.com/watch?v=_-w3cKL5teM , оно показывает, что делает программа (не совсем в режиме реального времени, но похоже), а затем показывает постепенное движение пикселей с использованием питона Calvin. скрипт. К сожалению, качество видео значительно ухудшается из-за кодирования / сжатия YouTube.


2
@Quincunx И я тоже не вызываю invokeLater, пристрелите меня: p Кроме того, спасибо :)
aditsu

16
Лучший ответ на данный момент ...
Юваль Фильмус

8
В случае сомнений, грубая сила это? Похоже, отличное решение, я хотел бы увидеть анимацию для этого, возможно, даже видео вместо GIF.
Лилиенталь

3
Вы можете немного расширить алгоритм до полного имитации отжига для небольшого улучшения. То, что вы делаете, уже очень близко (но это жадно). Поиск перестановки, которая минимизирует расстояние, кажется сложной задачей оптимизации, поэтому этот вид эвристики подходит. @Lilienthal - это не грубое принуждение, оно на самом деле близко к обычно используемым методам оптимизации.
Сабольч

3
Этот алгоритм имеет лучшие результаты на сегодняшний день. И это так просто. Это делает его явным победителем для меня.
Лейф

118

Ява

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class PixelRearranger {

    public static void main(String[] args) throws IOException {
        BufferedImage source = ImageIO.read(resource("American Gothic.png"));
        BufferedImage palette = ImageIO.read(resource("Mona Lisa.png"));
        BufferedImage result = rearrange(source, palette);
        ImageIO.write(result, "png", resource("result.png"));
        validate(palette, result);
    }

    public static class MInteger {
        int val;

        public MInteger(int i) {
            val = i;
        }
    }

    public static BufferedImage rearrange(BufferedImage source, BufferedImage palette) {
        BufferedImage result = new BufferedImage(source.getWidth(),
                source.getHeight(), BufferedImage.TYPE_INT_RGB);

        //This creates a list of points in the Source image.
        //Then, we shuffle it and will draw points in that order.
        List<Point> samples = getPoints(source.getWidth(), source.getHeight());
        System.out.println("gotPoints");

        //Create a list of colors in the palette.
        rgbList = getColors(palette);
        Collections.sort(rgbList, rgb);
        rbgList = new ArrayList<>(rgbList);
        Collections.sort(rbgList, rbg);
        grbList = new ArrayList<>(rgbList);
        Collections.sort(grbList, grb);
        gbrList = new ArrayList<>(rgbList);
        Collections.sort(gbrList, gbr);
        brgList = new ArrayList<>(rgbList);
        Collections.sort(brgList, brg);
        bgrList = new ArrayList<>(rgbList);
        Collections.sort(bgrList, bgr);

        while (!samples.isEmpty()) {
            Point currentPoint = samples.remove(0);
            int sourceAtPoint = source.getRGB(currentPoint.x, currentPoint.y);
            int bestColor = search(new MInteger(sourceAtPoint));
            result.setRGB(currentPoint.x, currentPoint.y, bestColor);
        }
        return result;
    }

    public static List<Point> getPoints(int width, int height) {
        HashSet<Point> points = new HashSet<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                points.add(new Point(x, y));
            }
        }
        List<Point> newList = new ArrayList<>();
        List<Point> corner1 = new LinkedList<>();
        List<Point> corner2 = new LinkedList<>();
        List<Point> corner3 = new LinkedList<>();
        List<Point> corner4 = new LinkedList<>();

        Point p1 = new Point(width / 3, height / 3);
        Point p2 = new Point(width * 2 / 3, height / 3);
        Point p3 = new Point(width / 3, height * 2 / 3);
        Point p4 = new Point(width * 2 / 3, height * 2 / 3);

        newList.add(p1);
        newList.add(p2);
        newList.add(p3);
        newList.add(p4);
        corner1.add(p1);
        corner2.add(p2);
        corner3.add(p3);
        corner4.add(p4);
        points.remove(p1);
        points.remove(p2);
        points.remove(p3);
        points.remove(p4);

        long seed = System.currentTimeMillis();
        Random c1Random = new Random(seed += 179426549); //The prime number pushes the first numbers apart
        Random c2Random = new Random(seed += 179426549); //Or at least I think it does.
        Random c3Random = new Random(seed += 179426549);
        Random c4Random = new Random(seed += 179426549);

        Dir NW = Dir.NW;
        Dir N = Dir.N;
        Dir NE = Dir.NE;
        Dir W = Dir.W;
        Dir E = Dir.E;
        Dir SW = Dir.SW;
        Dir S = Dir.S;
        Dir SE = Dir.SE;
        while (!points.isEmpty()) {
            putPoints(newList, corner1, c1Random, points, NW, N, NE, W, E, SW, S, SE);
            putPoints(newList, corner2, c2Random, points, NE, N, NW, E, W, SE, S, SW);
            putPoints(newList, corner3, c3Random, points, SW, S, SE, W, E, NW, N, NE);
            putPoints(newList, corner4, c4Random, points, SE, S, SW, E, W, NE, N, NW);
        }
        return newList;
    }

    public static enum Dir {
        NW(-1, -1), N(0, -1), NE(1, -1), W(-1, 0), E(1, 0), SW(-1, 1), S(0, 1), SE(1, 1);
        final int dx, dy;

        private Dir(int dx, int dy) {
            this.dx = dx;
            this.dy = dy;
        }

        public Point add(Point p) {
            return new Point(p.x + dx, p.y + dy);
        }
    }

    public static void putPoints(List<Point> newList, List<Point> listToAddTo, Random rand,
                                 HashSet<Point> points, Dir... adj) {
        List<Point> newPoints = new LinkedList<>();
        for (Iterator<Point> iter = listToAddTo.iterator(); iter.hasNext();) {
            Point p = iter.next();
            Point pul = adj[0].add(p);
            Point pu = adj[1].add(p);
            Point pur = adj[2].add(p);
            Point pl = adj[3].add(p);
            Point pr = adj[4].add(p);
            Point pbl = adj[5].add(p);
            Point pb = adj[6].add(p);
            Point pbr = adj[7].add(p);
            int allChosen = 0;
            if (points.contains(pul)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pul);
                    newList.add(pul);
                    points.remove(pul);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pu)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pu);
                    newList.add(pu);
                    points.remove(pu);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pur)) {
                if (rand.nextInt(3) == 0) {
                    allChosen++;
                    newPoints.add(pur);
                    newList.add(pur);
                    points.remove(pur);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pl)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pl);
                    newList.add(pl);
                    points.remove(pl);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pr)) {
                if (rand.nextInt(2) == 0) {
                    allChosen++;
                    newPoints.add(pr);
                    newList.add(pr);
                    points.remove(pr);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pbl)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pbl);
                    newList.add(pbl);
                    points.remove(pbl);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pb)) {
                if (rand.nextInt(3) == 0) {
                    allChosen++;
                    newPoints.add(pb);
                    newList.add(pb);
                    points.remove(pb);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pbr)) {
                newPoints.add(pbr);
                newList.add(pbr);
                points.remove(pbr);
            }
            if (allChosen == 7) {
                iter.remove();
            }
        }
        listToAddTo.addAll(newPoints);
    }

    public static List<MInteger> getColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<MInteger> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(new MInteger(img.getRGB(x, y)));
            }
        }
        return colors;
    }

    public static int search(MInteger color) {
        int rgbIndex = binarySearch(rgbList, color, rgb);
        int rbgIndex = binarySearch(rbgList, color, rbg);
        int grbIndex = binarySearch(grbList, color, grb);
        int gbrIndex = binarySearch(gbrList, color, gbr);
        int brgIndex = binarySearch(brgList, color, brg);
        int bgrIndex = binarySearch(bgrList, color, bgr);

        double distRgb = dist(rgbList.get(rgbIndex), color);
        double distRbg = dist(rbgList.get(rbgIndex), color);
        double distGrb = dist(grbList.get(grbIndex), color);
        double distGbr = dist(gbrList.get(gbrIndex), color);
        double distBrg = dist(brgList.get(brgIndex), color);
        double distBgr = dist(bgrList.get(bgrIndex), color);

        double minDist = Math.min(Math.min(Math.min(Math.min(Math.min(
                distRgb, distRbg), distGrb), distGbr), distBrg), distBgr);

        MInteger ans;
        if (minDist == distRgb) {
            ans = rgbList.get(rgbIndex);
        } else if (minDist == distRbg) {
            ans = rbgList.get(rbgIndex);
        } else if (minDist == distGrb) {
            ans = grbList.get(grbIndex);
        } else if (minDist == distGbr) {
            ans = grbList.get(grbIndex);
        } else if (minDist == distBrg) {
            ans = grbList.get(rgbIndex);
        } else {
            ans = grbList.get(grbIndex);
        }
        rgbList.remove(ans);
        rbgList.remove(ans);
        grbList.remove(ans);
        gbrList.remove(ans);
        brgList.remove(ans);
        bgrList.remove(ans);
        return ans.val;
    }

    public static int binarySearch(List<MInteger> list, MInteger val, Comparator<MInteger> cmp){
        int index = Collections.binarySearch(list, val, cmp);
        if (index < 0) {
            index = ~index;
            if (index >= list.size()) {
                index = list.size() - 1;
            }
        }
        return index;
    }

    public static double dist(MInteger color1, MInteger color2) {
        int c1 = color1.val;
        int r1 = (c1 & 0xFF0000) >> 16;
        int g1 = (c1 & 0x00FF00) >> 8;
        int b1 = (c1 & 0x0000FF);

        int c2 = color2.val;
        int r2 = (c2 & 0xFF0000) >> 16;
        int g2 = (c2 & 0x00FF00) >> 8;
        int b2 = (c2 & 0x0000FF);

        int dr = r1 - r2;
        int dg = g1 - g2;
        int db = b1 - b2;
        return Math.sqrt(dr * dr + dg * dg + db * db);
    }

    //This method is here solely for my ease of use (I put the files under <Project Name>/Resources/ )
    public static File resource(String fileName) {
        return new File(System.getProperty("user.dir") + "/Resources/" + fileName);
    }

    static List<MInteger> rgbList;
    static List<MInteger> rbgList;
    static List<MInteger> grbList;
    static List<MInteger> gbrList;
    static List<MInteger> brgList;
    static List<MInteger> bgrList;
    static Comparator<MInteger> rgb = (color1, color2) -> color1.val - color2.val;
    static Comparator<MInteger> rbg = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000)) | ((c1 & 0x00FF00) >> 8) | ((c1 & 0x0000FF) << 8);
        c2 = ((c2 & 0xFF0000)) | ((c2 & 0x00FF00) >> 8) | ((c2 & 0x0000FF) << 8);
        return c1 - c2;
    };
    static Comparator<MInteger> grb = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 8) | ((c1 & 0x00FF00) << 8) | ((c1 & 0x0000FF));
        c2 = ((c2 & 0xFF0000) >> 8) | ((c2 & 0x00FF00) << 8) | ((c2 & 0x0000FF));
        return c1 - c2;
    };

    static Comparator<MInteger> gbr = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 16) | ((c1 & 0x00FF00) << 8) | ((c1 & 0x0000FF) << 8);
        c2 = ((c2 & 0xFF0000) >> 16) | ((c2 & 0x00FF00) << 8) | ((c2 & 0x0000FF) << 8);
        return c1 - c2;
    };

    static Comparator<MInteger> brg = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 8) | ((c1 & 0x00FF00) >> 8) | ((c1 & 0x0000FF) << 16);
        c2 = ((c2 & 0xFF0000) >> 8) | ((c2 & 0x00FF00) >> 8) | ((c2 & 0x0000FF) << 16);
        return c1 - c2;
    };

    static Comparator<MInteger> bgr = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 16) | ((c1 & 0x00FF00)) | ((c1 & 0x0000FF) << 16);
        c2 = ((c2 & 0xFF0000) >> 16) | ((c2 & 0x00FF00)) | ((c2 & 0x0000FF) << 16);
        return c1 - c2;
    };

    public static void validate(BufferedImage palette, BufferedImage result) {
        List<Integer> paletteColors = getTrueColors(palette);
        List<Integer> resultColors = getTrueColors(result);
        Collections.sort(paletteColors);
        Collections.sort(resultColors);
        System.out.println(paletteColors.equals(resultColors));
    }

    public static List<Integer> getTrueColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(img.getRGB(x, y));
            }
        }
        Collections.sort(colors);
        return colors;
    }
}

Мой подход работает, находя самый близкий цвет к каждому пикселю (ну, вероятно, самый близкий), в трехмерном пространстве, так как цвета являются трехмерными.

Это работает путем создания списка всех точек, которые нам нужно заполнить, и списка всех возможных цветов, которые мы можем использовать. Мы рандомизируем список точек (чтобы изображение получилось лучше), затем проходим каждую точку и получаем цвет исходного изображения.

Обновление: я использовал простой бинарный поиск, поэтому красный цвет лучше, чем зеленый, который лучше, чем синий. Теперь я изменил его, чтобы выполнить шесть бинарных поисков (все возможные перестановки), а затем выбрать ближайший цвет. Это займет всего ~ 6 раз дольше (т.е. 1 минута). В то время как картинки все еще зернистые, цвета лучше сочетаются.

Обновление 2: я больше не рандомизирую список. Вместо этого я выбираю 4 точки, следуя правилу третей, затем случайным образом расставляю точки, предпочитая заполнять центр.

Примечание: см. Историю изменений для старых изображений.

Мона Лиза -> Река:

введите описание изображения здесь

Мона Лиза -> Американская готика:

введите описание изображения здесь

Мона Лиза -> Raytraced Сферы:

введите описание изображения здесь

Звездная ночь -> Мона Лиза:

введите описание изображения здесь


Вот анимированный Gif, показывающий, как было построено изображение:

введите описание изображения здесь

И показывает пиксели, взятые из Моны Лизы:

введите описание изображения здесь


11
Это чертовски удивительно. Я бы не подумал, что это возможно.
AndoDaan

6
Я сомневаюсь, что это было бы тривиально, но было бы удивительно иметь возможность создавать анимированную версию, которая показывает пиксели, перемещающиеся из исходного изображения в окончательное.
Миллинон

2
Я думаю, что вы неправильно поняли проблему. Вы должны изменить расположение пикселей в палитре, чтобы создать копию, а не просто использовать цвета из палитры. Каждый отдельный цвет должен использоваться в копии ровно столько раз, сколько он появлялся в палитре. Ваши изображения не проходят мой сценарий.
Увлечения Кэлвина

7
@Quincunx Как оказалось, мой сценарий был верным (хотя я и упростил его для потомков), как и ваша программа. По причинам, я не совсем уверен, что изображение Моны Лизы немного изменилось, когда оно было загружено. Я заметил, что пиксель в (177, 377) имеет RGB (0, 0, 16) онлайн и (0, 0, 14) на моем домашнем компьютере. Я заменил jpegs на pngs, чтобы избежать проблем с типом файлов с потерями. Пиксельные данные на изображениях не должны были изменяться, но все же может потребоваться повторная загрузка изображений.
Увлечения Кэлвина

8
Это не должен быть самый популярный ответ. Алгоритм излишне сложен, и результаты плохие, хотя они выглядят интересными. Сравните трансформацию из Моны Лизы в лучевые сферы с результатом Ардицу
Лейф,

97

Perl, с цветовым пространством Lab и сглаживанием

Примечание: теперь у меня тоже есть C-решение .

Использует подход, аналогичный подходу aditsu (выберите две случайные позиции и поменяйте местами пиксели в этих позициях, если это сделает изображение более похожим на целевое изображение), с двумя основными улучшениями:

  1. Использует цветовое пространство CIE L a b * для сравнения цветов - евклидова метрика в этом пространстве является очень хорошим приближением к воспринимаемой разнице между двумя цветами, поэтому цветовые отображения должны быть более точными, чем RGB или даже HSV / HSL.
  2. После начального прохода, помещающего пиксели в наилучшую возможную одиночную позицию, он делает дополнительный проход со случайным дизерингом. Вместо сравнения значений пикселей в двух позициях свопинга он вычисляет среднее значение пикселей в окрестности 3x3 с центром в позициях свопинга. Если своп улучшает средние цвета окрестностей, он разрешается, даже если он делает отдельные пиксели менее точными. Для некоторых пар изображений это оказывает сомнительное влияние на качество (и делает эффект палитры менее ярким), но для некоторых (например, сферы -> все остальное) это помогает совсем немного. Фактор «детализации» подчеркивает центральный пиксель в различной степени. Увеличение его уменьшает общее количество сглаживания, но сохраняет более мелкие детали от целевого изображения. Замедленная оптимизация медленнее,

Усреднение лабораторных значений, как и сглаживание, на самом деле неоправданно (их следует преобразовать в XYZ, усреднить и преобразовать обратно), но оно отлично работает для этих целей.

Эти изображения имеют предельные значения 100 и 200 (конец первой фазы, когда принимается менее 1 на 5000 свопов, а вторая фаза - 1 на 2500), и коэффициент детализации сглаживания 12 (немного более сильный, чем предыдущий набор ). При таком сверхвысоком качестве настройки генерация изображений занимает много времени, но при распараллеливании вся работа по-прежнему завершается в течение часа на моем 6-ядерном корпусе. Увеличение значений до 500 или около того завершает изображения в течение нескольких минут, они просто выглядят немного менее отточенными. Я хотел показать алгоритм к лучшему здесь.

Код ни в коем случае не хорош:

#!/usr/bin/perl
use strict;
use warnings;
use Image::Magick;
use Graphics::ColorObject 'RGB_to_Lab';
use List::Util qw(sum max);

my $source = Image::Magick->new;
$source->Read($ARGV[0]);
my $target = Image::Magick->new;
$target->Read($ARGV[1]);
my ($limit1, $limit2, $detail) = @ARGV[2,3,4];

my ($width, $height) = ($target->Get('width'), $target->Get('height'));

# Transfer the pixels of the $source onto a new canvas with the diemnsions of $target
$source->Set(magick => 'RGB');
my $img = Image::Magick->new(size => "${width}x${height}", magick => 'RGB', depth => 8);
$img->BlobToImage($source->ImageToBlob);

my ($made, $rejected) = (0,0);

system("rm anim/*.png");

my (@img_lab, @target_lab);
for my $x (0 .. $width) {
  for my $y (0 .. $height) {
    $img_lab[$x][$y] = RGB_to_Lab([$img->getPixel(x => $x, y => $y)], 'sRGB');
    $target_lab[$x][$y] = RGB_to_Lab([$target->getPixel(x => $x, y => $y)], 'sRGB');
  }
}

my $n = 0;
my $frame = 0;
my $mode = 1;

while (1) {
  $n++;

  my $swap = 0;
  my ($x1, $x2, $y1, $y2) = (int rand $width, int rand $width, int rand $height, int rand $height);
  my ($dist, $dist_swapped);

  if ($mode == 1) {
    $dist = (sum map { ($img_lab[$x1][$y1][$_] - $target_lab[$x1][$y1][$_])**2 } 0..2)
          + (sum map { ($img_lab[$x2][$y2][$_] - $target_lab[$x2][$y2][$_])**2 } 0..2);

    $dist_swapped = (sum map { ($img_lab[$x2][$y2][$_] - $target_lab[$x1][$y1][$_])**2 } 0..2)
                  + (sum map { ($img_lab[$x1][$y1][$_] - $target_lab[$x2][$y2][$_])**2 } 0..2);

  } else { # dither mode
    my $xoffmin = ($x1 == 0 || $x2 == 0 ? 0 : -1);
    my $xoffmax = ($x1 == $width - 1 || $x2 == $width - 1 ? 0 : 1);
    my $yoffmin = ($y1 == 0 || $y2 == 0 ? 0 : -1);
    my $yoffmax = ($y1 == $height - 1 || $y2 == $height - 1 ? 0 : 1);

    my (@img1, @img2, @target1, @target2, $points);
    for my $xoff ($xoffmin .. $xoffmax) {
      for my $yoff ($yoffmin .. $yoffmax) {
        $points++;
        for my $chan (0 .. 2) {
          $img1[$chan] += $img_lab[$x1+$xoff][$y1+$yoff][$chan];
          $img2[$chan] += $img_lab[$x2+$xoff][$y2+$yoff][$chan];
          $target1[$chan] += $target_lab[$x1+$xoff][$y1+$yoff][$chan];
          $target2[$chan] += $target_lab[$x2+$xoff][$y2+$yoff][$chan];
        }
      }
    }

    my @img1s = @img1;
    my @img2s = @img2;
    for my $chan (0 .. 2) {
      $img1[$chan] += $img_lab[$x1][$y1][$chan] * ($detail - 1);
      $img2[$chan] += $img_lab[$x2][$y2][$chan] * ($detail - 1);

      $target1[$chan] += $target_lab[$x1][$y1][$chan] * ($detail - 1);
      $target2[$chan] += $target_lab[$x2][$y2][$chan] * ($detail - 1);

      $img1s[$chan] += $img_lab[$x2][$y2][$chan] * $detail - $img_lab[$x1][$y1][$chan];
      $img2s[$chan] += $img_lab[$x1][$y1][$chan] * $detail - $img_lab[$x2][$y2][$chan];
    }

    $dist = (sum map { ($img1[$_] - $target1[$_])**2 } 0..2)
          + (sum map { ($img2[$_] - $target2[$_])**2 } 0..2);

    $dist_swapped = (sum map { ($img1s[$_] - $target1[$_])**2 } 0..2)
                  + (sum map { ($img2s[$_] - $target2[$_])**2 } 0..2);

  }

  if ($dist_swapped < $dist) {
    my @pix1 = $img->GetPixel(x => $x1, y => $y1);
    my @pix2 = $img->GetPixel(x => $x2, y => $y2);
    $img->SetPixel(x => $x1, y => $y1, color => \@pix2);
    $img->SetPixel(x => $x2, y => $y2, color => \@pix1);
    ($img_lab[$x1][$y1], $img_lab[$x2][$y2]) = ($img_lab[$x2][$y2], $img_lab[$x1][$y1]);
    $made ++;
  } else {
    $rejected ++;
  }

  if ($n % 50000 == 0) {
#    print "Made: $made Rejected: $rejected\n";
    $img->Write('png:out.png');
    system("cp", "out.png", sprintf("anim/frame%05d.png", $frame++));
    if ($mode == 1 and $made < $limit1) {
      $mode = 2;
      system("cp", "out.png", "nodither.png");
    } elsif ($mode == 2 and $made < $limit2) {
      last;
    }
    ($made, $rejected) = (0, 0);
  }
}

Результаты

Американская готическая палитра

Маленькая разница здесь с дизерингом или нет.

Палитра мона лиза

Дизеринг уменьшает полосы на сферах, но не особенно хорош.

Звездная ночь палитра

Мона Лиза сохраняет немного больше деталей при сглаживании. Сферы примерно такая же, как в прошлый раз.

Палитра криков

Звездная ночь без смазывания - самая удивительная вещь в мире. Дизеринг делает его более точным, но гораздо менее интересным.

Палитра сфер

Как говорит адицу, настоящее испытание. Я думаю, что я прошел.

Дизеринг очень помогает в американской готике и Моне Лизе, смешивая некоторые оттенки серого и других цветов с более интенсивными пикселями, чтобы получить полуточные оттенки кожи вместо ужасных пятен. Крик затронут гораздо меньше.

Камаро - Мустанг

Исходные изображения из поста flawr.

Camaro:

Мустанг:

Камаро палитра

Выглядит довольно хорошо без дизеринга.

«Плотный» дизеринг (тот же фактор детализации, что и выше) не сильно меняется, он лишь добавляет немного деталей в блики на капоте и крыше.

«Свободный» дизеринг (коэффициент детализации упал до 6) действительно сглаживает тональность, и через лобовое стекло видно намного больше деталей, но паттерны дизеринга более заметны повсюду.

Палитра мустанга

Детали машины выглядят великолепно, но серые пиксели выглядят глючно. Что еще хуже, все более темные желтые пиксели были распределены по красному корпусу Camaro, и алгоритм не сглаживания не может найти ничего общего с более светлыми (перемещение их в машину ухудшило бы совпадение, а перемещение на другое пятно на заднем плане не имеет никакого значения), поэтому на заднем плане есть призрачный мустанг.

Дизеринг может распространить эти лишние желтые пиксели вокруг, чтобы они не соприкасались, более или менее равномерно распределяя их по фону. Основные моменты и тени на машине выглядят немного лучше.

Опять же, свободный дизеринг имеет ровную тональность, раскрывает больше деталей на фарах и лобовом стекле. Машина снова выглядит почти красной. фон почему-то более размытый. Не уверен, что мне это нравится.

видео

( HQ Link )


3
Мне очень нравится этот, сильно размытые изображения имеют чудесное пуантилистское чувство. Seurat делает Мона Лизу кто-нибудь?
Борис Паук

2
Ваш алгоритм определенно отлично справляется с ужасной палитрой Сфер, хорошая работа!
Snowbody

1
@hobbs Фантастическое использование палитры радуги, и ваши машины почти идеальны! Было бы хорошо, если бы я использовал некоторые из ваших изображений в видео на YouTube для демонстрации своего сценария анимации?
Увлечения Кэлвина

1
Я думаю, что единственная причина, по которой ваше сглаживание дает этот шаблон, заключается в том, что вы используете блок пикселей 3х3 с весом, измененным только для центра. Если вы взвесили пиксели в соответствии с расстоянием от центра (таким образом, угловые пиксели вносят меньший вклад, чем 4 соседние) и, возможно, расширились до чуть большего количества пикселей, то размывание должно быть менее заметным. Это уже такое большое улучшение для радужной палитры, так что, возможно, стоит посмотреть, что еще она может сделать ...
trichoplax

1
@githubphagocyte Я потратил полдня на попытки подобного, но ничего из этого не получилось так, как я хотел. Один из вариантов дал очень приятный случайный дизеринг, но также дал мне фазу оптимизации, которая никогда не заканчивалась. Другие варианты имели худшее артефактирование или слишком сильное сглаживание. Мое решение C лучше сглаживается благодаря сплайн-интерполяции ImageMagick. Это кубический сплайн, поэтому я думаю, что он использует окрестности 5х5.
Хоббс

79

питон

Идея проста: у каждого пикселя есть точка в пространстве 3D RGB. Цель состоит в том, чтобы сопоставить каждый пиксель исходного изображения и одно целевое изображение, предпочтительно, чтобы они были «близкими» (представляли «одинаковый» цвет). Поскольку они могут быть распределены по-разному, мы не можем просто сопоставить ближайшего соседа.

стратегия

Позвольте nбыть целым числом (маленький, 3-255 или около того). Теперь пиксельное облако в пространстве RGB сортируется по первой оси (R). Этот набор пикселей теперь разделен на n разделов. Каждый из разделов теперь сортируется вдоль второй оси (B), которая снова сортируется и разбивается таким же образом. Мы делаем это с обеими картинками, и теперь имеем для обеих точек массив. Теперь мы можем просто сопоставить пиксели по их положению в массиве, так как пиксель в той же позиции в каждом массиве имеет аналогичную позицию относительно каждого пиксельного облака в пространстве RGB.

Если распределение пикселей в RGB-пространстве обоих изображений одинаковое (имеется в виду только смещение и / или растяжение вдоль оси 3), результат будет довольно предсказуемым. Если распределения выглядят совершенно иначе, этот алгоритм не даст столь же хороших результатов (как видно из последнего примера), но я думаю, что это также один из самых сложных случаев. Чего он не делает, так это использует эффекты взаимодействия соседних пикселей в восприятии.

Код

Отказ от ответственности: я абсолютный новичок в питоне.

from PIL import Image

n = 5 #number of partitions per channel.

src_index = 3 #index of source image
dst_index = 2 #index of destination image

images =  ["img0.bmp","img1.bmp","img2.bmp","img3.bmp"];
src_handle = Image.open(images[src_index])
dst_handle = Image.open(images[dst_index])
src = src_handle.load()
dst = dst_handle.load()
assert src_handle.size[0]*src_handle.size[1] == dst_handle.size[0]*dst_handle.size[1],"images must be same size"

def makePixelList(img):
    l = []
    for x in range(img.size[0]):
        for y in range(img.size[1]):
            l.append((x,y))
    return l

lsrc = makePixelList(src_handle)
ldst = makePixelList(dst_handle)

def sortAndDivide(coordlist,pixelimage,channel): #core
    global src,dst,n
    retlist = []
    #sort
    coordlist.sort(key=lambda t: pixelimage[t][channel])
    #divide
    partitionLength = int(len(coordlist)/n)
    if partitionLength <= 0:
        partitionLength = 1
    if channel < 2:
        for i in range(0,len(coordlist),partitionLength):
            retlist += sortAndDivide(coordlist[i:i+partitionLength],pixelimage,channel+1)
    else:
        retlist += coordlist
    return retlist

print(src[lsrc[0]])

lsrc = sortAndDivide(lsrc,src,0)
ldst = sortAndDivide(ldst,dst,0)

for i in range(len(ldst)):
    dst[ldst[i]] = src[lsrc[i]]

dst_handle.save("exchange"+str(src_index)+str(dst_index)+".png")

Результат

Я думаю, что это оказалось неплохо, учитывая простое решение. Конечно, вы можете получить лучшие результаты, если поиграться с параметром или сначала преобразовать цвета в другое цветовое пространство, или даже оптимизировать разбиение.

сравнение моих результатов

Полная галерея здесь: https://imgur.com/a/hzaAm#6

Подробно для реки

Моналиса> река

Monalisa> река

люди> река

люди> река

шары> река

шарики> реки

звездная ночь> река

ноктюрн> река

крик> река

thecry> река

шарики> МонаЛиза, разные n = 2,4,6, ..., 20

Это была самая сложная задача, я думаю, что в отличие от красивых картинок, здесь gif (должен был быть уменьшен до 256 цветов) различных значений параметров n = 2,4,6, ..., 20. Для меня было удивительным, что очень низкие значения приводили к лучшим изображениям (глядя на лицо мадам Лизы): шары> моналиса

Извините я не могу остановиться

Какой из них вам больше нравится? Шеви камаро или форд мустанг? Возможно, эту технику можно улучшить и использовать для раскрашивания картинок. Теперь вот: сначала я грубо вырезал машины на заднем плане, покрасив их в белый цвет (краской, не очень профессионально ...), а затем использовал программу python в каждом направлении.

Оригиналы

оригинал оригинал

перекрасилась

Есть некоторые артефакты, я думаю, потому что площадь одного автомобиля была немного больше, чем другого, и потому что мои артистические навыки довольно плохие =) манипулировали введите описание изображения здесь


5
Вау, мне очень нравится река Звездная ночь, и как Крик делает ее похожей на реку огня.
Увлечения Кэлвина

@ Calvin'sHobbies вау да! Они выглядят почти нарисованными, я даже не смотрел на них внимательно, так как загружал новые изображения = P Но спасибо за этот большой вызов!
flawr

3
Я люблю машины трансформации. Это может когда-то стать своего рода преобразованием редактирования изображений, правда!
Томсминг

@tomsmeding Спасибо, я уже думал об использовании техники для раскрашивания ч / б изображений, но до сих пор с ограниченным успехом. Но, возможно, нам нужно еще несколько идей, чтобы сделать это =)
flawr

@flawr Было бы хорошо, если бы я использовал некоторые из ваших изображений в видео на YouTube, чтобы продемонстрировать свой сценарий анимации?
Увлечения Кэлвина

48

Python - теоретически оптимальное решение

Я говорю теоретически оптимально, потому что действительно оптимальное решение не вполне выполнимо для вычисления. Я начну с описания теоретического решения, а затем объясню, как я изменил его, чтобы сделать его вычислительно выполнимым как в пространстве, так и во времени.

Я считаю наиболее оптимальным решение, которое дает наименьшую общую ошибку по всем пикселям между старым и новым изображениями. Ошибка между двумя пикселями определяется как евклидово расстояние между точками в трехмерном пространстве, где каждое значение цвета (R, G, B) является координатой. На практике, из-за того, как люди видят вещи, оптимальное решение может быть не самым лучшим решением. Тем не менее, похоже, что он достаточно хорош во всех случаях.

Чтобы вычислить сопоставление, я рассмотрел это как задачу согласования двудольного минимального веса . Другими словами, есть два набора узлов: исходные пиксели и пиксели палитры. Ребро создается между каждым пикселем в двух наборах (но ребра в наборе не создаются). Стоимость или вес ребра - это евклидово расстояние между двумя пикселями, как описано выше. Чем ближе два цвета визуально, тем ниже стоимость между пикселями.

Пример двустороннего соответствия

Это создает матрицу затрат размером N 2 . Для этих изображений, где N = 123520, приблизительно 40 ГБ памяти требуется для представления затрат в виде целых чисел, а половина - в виде коротких целых чисел. В любом случае, у меня не было достаточно памяти на моей машине, чтобы попытаться. Другая проблема заключается в том, что венгерский алгоритм , или алгоритм Йонкера-Волгэнанта , который можно использовать для решения этой проблемы, выполняется за N 3 времени. Хотя определенно вычислимо, генерация решения для изображения, вероятно, заняла бы часы или дни.

Чтобы обойти эту проблему, я случайным образом сортирую оба списка пикселей, делю списки на куски C, запускаю реализацию C ++ алгоритма Jonker-Volgenant для каждой пары подсписков, а затем присоединяюсь к спискам, чтобы создать окончательное отображение. Поэтому приведенный ниже код позволит найти действительно оптимальное решение при условии, что они установят размер блока C на 1 (без разбиения на фрагменты) и будут иметь достаточно памяти. Для этих изображений я установил C равным 16, так что N становится 7720, что занимает всего несколько минут на изображение.

Простой способ подумать о том, почему это работает, состоит в том, что случайная сортировка списка пикселей с последующим взятием поднабора похожа на выборку изображения. Таким образом, установив C = 16, это все равно что взять 16 различных случайных выборок размера N / C как из оригинала, так и из палитры. Конечно, есть и лучшие способы разделения списков, но случайный подход дает приличные результаты.

import subprocess
import multiprocessing as mp
import sys
import os
import sge
from random import shuffle
from PIL import Image
import numpy as np
import LAPJV
import pdb

def getError(p1, p2):
    return (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2 + (p1[2]-p2[2])**2

def getCostMatrix(pallete_list, source_list):
    num_pixels = len(pallete_list)
    matrix = np.zeros((num_pixels, num_pixels))

    for i in range(num_pixels):
        for j in range(num_pixels):
            matrix[i][j] = getError(pallete_list[i], source_list[j])

    return matrix

def chunks(l, n):
    if n < 1:
        n = 1
    return [l[i:i + n] for i in range(0, len(l), n)]

def imageToColorList(img_file):
    i = Image.open(img_file)

    pixels = i.load()
    width, height = i.size

    all_pixels = []
    for x in range(width):
        for y in range(height):
            pixel = pixels[x, y]
            all_pixels.append(pixel)

    return all_pixels

def colorListToImage(color_list, old_img_file, new_img_file, mapping):
    i = Image.open(old_img_file)

    pixels = i.load()
    width, height = i.size
    idx = 0

    for x in range(width):
        for y in range(height):
            pixels[x, y] = color_list[mapping[idx]]
            idx += 1

    i.save(new_img_file)

def getMapping(pallete_list, source_list):
    matrix = getCostMatrix(source_list, pallete_list)
    result = LAPJV.lap(matrix)[1]
    ret = []
    for i in range(len(pallete_list)):
        ret.append(result[i])
    return ret

def randomizeList(l):
    rdm_l = list(l)
    shuffle(rdm_l)
    return rdm_l

def getPartialMapping(zipped_chunk):
    pallete_chunk = zipped_chunk[0]
    source_chunk = zipped_chunk[1]
    subl_pallete = map(lambda v: v[1], pallete_chunk)
    subl_source = map(lambda v: v[1], source_chunk)
    mapping = getMapping(subl_pallete, subl_source)
    return mapping

def getMappingWithPartitions(pallete_list, source_list, C = 1):
    rdm_pallete = randomizeList(enumerate(pallete_list))
    rdm_source = randomizeList(enumerate(source_list))
    num_pixels = len(rdm_pallete)
    real_mapping = [0] * num_pixels

    chunk_size = int(num_pixels / C)

    chunked_rdm_pallete = chunks(rdm_pallete, chunk_size)
    chunked_rdm_source = chunks(rdm_source, chunk_size)
    zipped_chunks = zip(chunked_rdm_pallete, chunked_rdm_source)

    pool = mp.Pool(2)
    mappings = pool.map(getPartialMapping, zipped_chunks)

    for mapping, zipped_chunk in zip(mappings, zipped_chunks):
        pallete_chunk = zipped_chunk[0]
        source_chunk = zipped_chunk[1]
        for idx1,idx2 in enumerate(mapping):
            src_px = source_chunk[idx1]
            pal_px = pallete_chunk[idx2]
            real_mapping[src_px[0]] = pal_px[0]

    return real_mapping

def run(pallete_name, source_name, output_name):
    print("Getting Colors...")
    pallete_list = imageToColorList(pallete_name)
    source_list = imageToColorList(source_name)

    print("Creating Mapping...")
    mapping = getMappingWithPartitions(pallete_list, source_list, C = 16)

    print("Generating Image...");
    colorListToImage(pallete_list, source_name, output_name, mapping)

if __name__ == '__main__':
    pallete_name = sys.argv[1]
    source_name = sys.argv[2]
    output_name = sys.argv[3]
    run(pallete_name, source_name, output_name)

Результаты:

Как и в случае решения aditsu, все эти изображения были созданы с использованием одинаковых параметров. Единственным параметром здесь является C, который должен быть установлен как можно ниже. Для меня C = 16 был хорошим балансом между скоростью и качеством.

Все изображения: http://imgur.com/a/RCZiX#0

Американская готическая палитра

мона-готическом кричать-готическом

Палитра мона лиза

готик-мона кричать-мона

Звездная ночь палитра

мона-ночь река-ночь

Палитра криков

готик-Крик мона-Крик

Речная палитра

готическая-сфера Mona-сферы

Палитра сфер

готическая-сфера Mona-сферы


4
Мне очень нравятся (Крик -> Звездная ночь) и (Сферы -> Звездная ночь). (Сферы -> Мона Лиза) тоже не так уж и плохо, но я бы хотел увидеть еще больше сглаживания.
Джон Дворак

Lol, я думал то же самое о сопоставлении двудольных графов, но отказался от этой идеи, потому что N ^ 3 ..
RobAu

Этот «почти детерминированный» алгоритм побеждает все детерминированные IMO и стоит на одном месте с хорошими рандомизированными. Мне это нравится.
Хоббс

1
Я не согласен с вашим представлением об оптимальном решении. Почему? Дизеринг может улучшить качество восприятия (для людей), но при этом вы получите более низкую оценку. Также использование RGB над чем-то вроде CIELUV является ошибкой.
Томас Эдинг

39

питон

Изменить: только что понял, что вы можете на самом деле резкость источника с ImageFilter, чтобы сделать результаты более четкими.

Радуга -> Мона Лиза (заостренный источник Моны Лизы, только Яркость)

введите описание изображения здесь

Радуга -> Мона Лиза (необостренный источник, взвешенный с Y = 10, I = 10, Q = 0)

введите описание изображения здесь

Мона Лиза -> Американская готика (источник без резкости, только яркость)

введите описание изображения здесь

Мона Лиза -> Американская готика (необостренный источник, взвешенный с Y = 1, I = 10, Q = 1)

введите описание изображения здесь

Река -> Радуга (источник без резкости, только яркость)

введите описание изображения здесь

По сути, он получает все пиксели из двух картинок в два списка.

Сортируйте их по яркости в качестве ключа. Y в YIQ представляет яркость.

Затем для каждого пикселя в источнике (в порядке возрастания яркости) получите значение RGB из пикселя с таким же индексом в списке палитр.

import Image, ImageFilter, colorsys

def getPixels(image):
    width, height = image.size
    pixels = []
    for x in range(width):
        for y in range(height):
            pixels.append([(x,y), image.getpixel((x,y))])
    return pixels

def yiq(pixel):
    # y is the luminance
    y,i,q = colorsys.rgb_to_yiq(pixel[1][0], pixel[1][6], pixel[1][7])
    # Change the weights accordingly to get different results
    return 10*y + 0*i + 0*q

# Open the images
source  = Image.open('ml.jpg')
pallete = Image.open('rainbow.png')

# Sharpen the source... It won't affect the palette anyway =D
source = source.filter(ImageFilter.SHARPEN)

# Sort the two lists by luminance
sourcePixels  = sorted(getPixels(source),  key=yiq)
palletePixels = sorted(getPixels(pallete), key=yiq)

copy = Image.new('RGB', source.size)

# Iterate through all the coordinates of source
# And set the new color
index = 0
for sourcePixel in sourcePixels:
    copy.putpixel(sourcePixel[0], palletePixels[index][8])
    index += 1

# Save the result
copy.save('copy.png')

Чтобы идти в ногу с тенденцией анимации ...

Пиксели в крике попадаются в звездную ночь и наоборот

введите описание изображения здесь введите описание изображения здесь


2
Эта простая идея работает очень хорошо. Интересно, можно ли его расширить и использовать взвешенную яркость, насыщенность и оттенок? (Например, 10 * L + S + H), чтобы получить лучшее соответствие цвета той же области.
Муги

1
@bitpwnr Ваши изображения не проходят мой сценарий, но это почти наверняка, потому что вы используете немного другие jpegs, которые у меня были изначально, так что ничего страшного. Однако я смог запустить ваш код только после замены [6], [7] и [8] на [1], [2] и [1]. Я получаю те же изображения, но это очень уникальная опечатка: P
Увлечения Кэлвина

Ваши изображения очень четкие, но немного ненасыщенные: p
aditsu

@ Calvin'sHobbies Opps, исправил опечатки.
Векторизовано

@bitpwner Было бы хорошо, если бы я использовал некоторые из ваших изображений в видео на YouTube для демонстрации своего сценария анимации?
Увлечения Кэлвина

39

C # Winform - Visual Studio 2010

Редактирование Добавлено дизеринг.

Это моя версия алгоритма случайной замены - @hobbs flavour. Я все еще чувствую, что какое-то неслучайное смешение может сделать лучше ...

Обработка цвета в пространстве Y-Cb-Cr (как при сжатии JPEG)

Двухэтапная разработка:

  1. Копия пикселя из источника в порядке яркости. Это уже дает хорошее изображение, но ненасыщенный - почти с серой шкалой - почти в 0 раз
  2. Повторный случайный обмен пикселей. Обмен выполняется, если это дает лучшую дельту (по отношению к источнику) в ячейке 3x3, содержащей пиксель. Так что это эффект размывания. Дельта рассчитывается по пространству Y-Cr-Cb без взвешивания различных компонентов.

По сути, это тот же метод, который используется @hobbs, без первого случайного обмена без сглаживания. Просто мое время короче (язык имеет значение?), И я думаю, что мои изображения лучше (возможно, используемое цветовое пространство более точное).

Использование программы: поместите изображения .png в папку c: \ temp, отметьте элемент в списке, чтобы выбрать изображение палитры, выберите элемент в списке, чтобы выбрать исходное изображение (не так удобно для пользователя). Нажмите кнопку «Пуск», чтобы начать разработку, сохранение выполняется автоматически (даже если вы предпочитаете не опасаться).

Время разработки до 90 секунд.

Обновленные результаты

Палитра: американская готика

Монна Лиза радуга река Крик Звездная ночь

Палитра: Монна Лиза

американская готика радуга река Крик Звездная ночь

Палитра: Радуга

американская готика Монна Лиза река Крик Звездная ночь

Палитра: Река

американская готика Монна Лиза радуга Крик Звездная ночь

Палитра: Крик

американская готика Монна Лиза радуга река Звездная ночь

Палитра: Звездная ночь

американская готика Монна Лиза радуга река Крик

Form1.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Drawing.Imaging;
using System.IO;

namespace Palette
{
    public struct YRB
    {
        public int y, cb, cr;

        public YRB(int r, int g, int b)
        {
            y = (int)(0.299 * r + 0.587 * g + 0.114 * b);
            cb = (int)(128 - 0.168736 * r - 0.331264 * g + 0.5 * b);
            cr = (int)(128 + 0.5 * r - 0.418688 * g - 0.081312 * b);
        }
    }

    public struct Pixel
    {
        private const int ARGBAlphaShift = 24;
        private const int ARGBRedShift = 16;
        private const int ARGBGreenShift = 8;
        private const int ARGBBlueShift = 0;

        public int px, py;
        private uint _color;
        public YRB yrb;

        public Pixel(uint col, int px = 0, int py = 0)
        {
            this.px = px;
            this.py = py;
            this._color = col;
            yrb = new YRB((int)(col >> ARGBRedShift) & 255, (int)(col >> ARGBGreenShift) & 255, (int)(col >> ARGBBlueShift) & 255); 
        }

        public uint color
        {
            get { 
                return _color; 
            }
            set {
                _color = color;
                yrb = new YRB((int)(color >> ARGBRedShift) & 255, (int)(color >> ARGBGreenShift) & 255, (int)(color >> ARGBBlueShift) & 255);
            }
        }

        public int y
        {
            get { return yrb.y; }
        }
        public int cr
        {
            get { return yrb.cr; }
        }
        public int cb
        {
            get { return yrb.cb; }
        }
    }

    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            DirectoryInfo di = new System.IO.DirectoryInfo(@"c:\temp\");
            foreach (FileInfo file in di.GetFiles("*.png"))
            {
                ListViewItem item = new ListViewItem(file.Name);
                item.SubItems.Add(file.FullName);
                lvFiles.Items.Add(item);
            }
        }

        private void lvFiles_ItemSelectionChanged(object sender, ListViewItemSelectionChangedEventArgs e)
        {
            if (e.IsSelected)
            {
                string file = e.Item.SubItems[1].Text;
                GetImagePB(pbSource, file);
                pbSource.Tag = file; 
                DupImage(pbSource, pbOutput);

                this.Width = pbOutput.Width + pbOutput.Left + 20;
                this.Height = Math.Max(pbOutput.Height, pbPalette.Height)+lvFiles.Height*2;   
            }
        }

        private void lvFiles_ItemCheck(object sender, ItemCheckEventArgs e)
        {
            foreach (ListViewItem item in lvFiles.CheckedItems)
            {
                if (item.Index != e.Index) item.Checked = false;
            }
            string file = lvFiles.Items[e.Index].SubItems[1].Text;
            GetImagePB(pbPalette, file);
            pbPalette.Tag = lvFiles.Items[e.Index].SubItems[0].Text; 

            this.Width = pbOutput.Width + pbOutput.Left + 20;
            this.Height = Math.Max(pbOutput.Height, pbPalette.Height) + lvFiles.Height * 2;   
        }

        Pixel[] Palette;
        Pixel[] Source;

        private void BtnStart_Click(object sender, EventArgs e)
        {
            lvFiles.Enabled = false;
            btnStart.Visible = false;
            progressBar.Visible = true; 
            DupImage(pbSource, pbOutput);

            Work(pbSource.Image as Bitmap, pbPalette.Image as Bitmap, pbOutput.Image as Bitmap);

            string newfile = (string)pbSource.Tag +"-"+ (string)pbPalette.Tag;
            pbOutput.Image.Save(newfile, ImageFormat.Png);   

            lvFiles.Enabled = true;
            btnStart.Visible = true;
            progressBar.Visible = false;
        }

        private void Work(Bitmap srcb, Bitmap palb, Bitmap outb)
        {
            GetData(srcb, out Source);
            GetData(palb, out Palette);

            FastBitmap fout = new FastBitmap(outb);
            FastBitmap fsrc = new FastBitmap(srcb);
            int pm = Source.Length;
            int w = outb.Width;
            int h = outb.Height;
            progressBar.Maximum = pm;

            fout.LockImage();
            for (int p = 0; p < pm; p++)
            {
                fout.SetPixel(Source[p].px, Source[p].py, Palette[p].color);
            }
            fout.UnlockImage();

            pbOutput.Refresh();

            var rnd = new Random();
            int totsw = 0;
            progressBar.Maximum = 200;
            for (int i = 0; i < 200; i++)
            {
                int nsw = 0;
                progressBar.Value = i;
                fout.LockImage();
                fsrc.LockImage();
                for (int j = 0; j < 200000; j++)
                {
                    nsw += CheckSwap(fsrc, fout, 1 + rnd.Next(w - 2), 1 + rnd.Next(h - 2), 1 + rnd.Next(w - 2), 1 + rnd.Next(h - 2));
                }
                totsw += nsw;
                lnCurSwap.Text = nsw.ToString();
                lnTotSwap.Text = totsw.ToString();
                fout.UnlockImage();
                fsrc.UnlockImage();
                pbOutput.Refresh();
                Application.DoEvents();
                if (nsw == 0)
                {
                    break;
                }
            }            
        }

        int CheckSwap(FastBitmap fsrc, FastBitmap fout, int x1, int y1, int x2, int y2)
        {
            const int fmax = 3;
            YRB ov1 = new YRB();
            YRB sv1 = new YRB();
            YRB ov2 = new YRB();
            YRB sv2 = new YRB();

            int f;
            for (int dx = -1; dx <= 1; dx++)
            {
                for (int dy = -1; dy <= 1; dy++)
                {
                    f = (fmax - Math.Abs(dx) - Math.Abs(dy));
                    {
                        Pixel o1 = new Pixel(fout.GetPixel(x1 + dx, y1 + dy));
                        ov1.y += o1.y * f;
                        ov1.cb += o1.cr * f;
                        ov1.cr += o1.cb * f;

                        Pixel s1 = new Pixel(fsrc.GetPixel(x1 + dx, y1 + dy));
                        sv1.y += s1.y * f;
                        sv1.cb += s1.cr * f;
                        sv1.cr += s1.cb * f;

                        Pixel o2 = new Pixel(fout.GetPixel(x2 + dx, y2 + dy));
                        ov2.y += o2.y * f;
                        ov2.cb += o2.cr * f;
                        ov2.cr += o2.cb * f;

                        Pixel s2 = new Pixel(fsrc.GetPixel(x2 + dx, y2 + dy));
                        sv2.y += s2.y * f;
                        sv2.cb += s2.cr * f;
                        sv2.cr += s2.cb * f;
                    }
                }
            }
            YRB ox1 = ov1;
            YRB ox2 = ov2;
            Pixel oc1 = new Pixel(fout.GetPixel(x1, y1));
            Pixel oc2 = new Pixel(fout.GetPixel(x2, y2));
            ox1.y += fmax * oc2.y - fmax * oc1.y;
            ox1.cb += fmax * oc2.cr - fmax * oc1.cr;
            ox1.cr += fmax * oc2.cb - fmax * oc1.cb;
            ox2.y += fmax * oc1.y - fmax * oc2.y;
            ox2.cb += fmax  * oc1.cr - fmax * oc2.cr;
            ox2.cr += fmax * oc1.cb - fmax * oc2.cb;

            int curd = Delta(ov1, sv1, 1) + Delta(ov2, sv2, 1);
            int newd = Delta(ox1, sv1, 1) + Delta(ox2, sv2, 1);
            if (newd < curd)
            {
                fout.SetPixel(x1, y1, oc2.color);
                fout.SetPixel(x2, y2, oc1.color);
                return 1;
            }
            return 0;
        }

        int Delta(YRB p1, YRB p2, int sf)
        {
            int dy = (p1.y - p2.y);
            int dr = (p1.cr - p2.cr);
            int db = (p1.cb - p2.cb);

            return dy * dy * sf + dr * dr + db * db;
        }

        Bitmap GetData(Bitmap bmp, out Pixel[] Output)
        {
            FastBitmap fb = new FastBitmap(bmp);
            BitmapData bmpData = fb.LockImage(); 

            Output = new Pixel[bmp.Width * bmp.Height];

            int p = 0;
            for (int y = 0; y < bmp.Height; y++)
            {
                uint col = fb.GetPixel(0, y);
                Output[p++] = new Pixel(col, 0, y);

                for (int x = 1; x < bmp.Width; x++)
                {
                    col = fb.GetNextPixel();
                    Output[p++] = new Pixel(col, x, y);
                }
            }
            fb.UnlockImage(); // Unlock the bits.

            Array.Sort(Output, (a, b) => a.y - b.y);

            return bmp;
        }

        void DupImage(PictureBox s, PictureBox d)
        {
            if (d.Image != null)
                d.Image.Dispose();
            d.Image = new Bitmap(s.Image.Width, s.Image.Height);  
        }

        void GetImagePB(PictureBox pb, string file)
        {
            Bitmap bms = new Bitmap(file, false);
            Bitmap bmp = bms.Clone(new Rectangle(0, 0, bms.Width, bms.Height), PixelFormat.Format32bppArgb);
            bms.Dispose(); 
            if (pb.Image != null)
                pb.Image.Dispose();
            pb.Image = bmp;
        }
    }

    //Adapted from Visual C# Kicks - http://www.vcskicks.com/
    unsafe public class FastBitmap
    {
        private Bitmap workingBitmap = null;
        private int width = 0;
        private BitmapData bitmapData = null;
        private Byte* pBase = null;

        public FastBitmap(Bitmap inputBitmap)
        {
            workingBitmap = inputBitmap;
        }

        public BitmapData LockImage()
        {
            Rectangle bounds = new Rectangle(Point.Empty, workingBitmap.Size);

            width = (int)(bounds.Width * 4 + 3) & ~3;

            //Lock Image
            bitmapData = workingBitmap.LockBits(bounds, ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
            pBase = (Byte*)bitmapData.Scan0.ToPointer();
            return bitmapData;
        }

        private uint* pixelData = null;

        public uint GetPixel(int x, int y)
        {
            pixelData = (uint*)(pBase + y * width + x * 4);
            return *pixelData;
        }

        public uint GetNextPixel()
        {
            return *++pixelData;
        }

        public void GetPixelArray(int x, int y, uint[] Values, int offset, int count)
        {
            pixelData = (uint*)(pBase + y * width + x * 4);
            while (count-- > 0)
            {
                Values[offset++] = *pixelData++;
            }
        }

        public void SetPixel(int x, int y, uint color)
        {
            pixelData = (uint*)(pBase + y * width + x * 4);
            *pixelData = color;
        }

        public void SetNextPixel(uint color)
        {
            *++pixelData = color;
        }

        public void UnlockImage()
        {
            workingBitmap.UnlockBits(bitmapData);
            bitmapData = null;
            pBase = null;
        }
    }

}

Form1.Designer.cs

namespace Palette
{
    partial class Form1
    {
        /// <summary>
        /// Variabile di progettazione necessaria.
        /// </summary>
        private System.ComponentModel.IContainer components = null;

        /// <summary>
        /// Liberare le risorse in uso.
        /// </summary>
        /// <param name="disposing">ha valore true se le risorse gestite devono essere eliminate, false in caso contrario.</param>
        protected override void Dispose(bool disposing)
        {
            if (disposing && (components != null))
            {
                components.Dispose();
            }
            base.Dispose(disposing);
        }

        #region Codice generato da Progettazione Windows Form

        /// <summary>
        /// Metodo necessario per il supporto della finestra di progettazione. Non modificare
        /// il contenuto del metodo con l'editor di codice.
        /// </summary>
        private void InitializeComponent()
        {
            this.components = new System.ComponentModel.Container();
            this.panel = new System.Windows.Forms.FlowLayoutPanel();
            this.pbSource = new System.Windows.Forms.PictureBox();
            this.pbPalette = new System.Windows.Forms.PictureBox();
            this.pbOutput = new System.Windows.Forms.PictureBox();
            this.btnStart = new System.Windows.Forms.Button();
            this.progressBar = new System.Windows.Forms.ProgressBar();
            this.imageList1 = new System.Windows.Forms.ImageList(this.components);
            this.lvFiles = new System.Windows.Forms.ListView();
            this.lnTotSwap = new System.Windows.Forms.Label();
            this.lnCurSwap = new System.Windows.Forms.Label();
            this.panel.SuspendLayout();
            ((System.ComponentModel.ISupportInitialize)(this.pbSource)).BeginInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbPalette)).BeginInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbOutput)).BeginInit();
            this.SuspendLayout();
            // 
            // panel
            // 
            this.panel.AutoScroll = true;
            this.panel.AutoSize = true;
            this.panel.Controls.Add(this.pbSource);
            this.panel.Controls.Add(this.pbPalette);
            this.panel.Controls.Add(this.pbOutput);
            this.panel.Dock = System.Windows.Forms.DockStyle.Top;
            this.panel.Location = new System.Drawing.Point(0, 0);
            this.panel.Name = "panel";
            this.panel.Size = new System.Drawing.Size(748, 266);
            this.panel.TabIndex = 3;
            this.panel.WrapContents = false;
            // 
            // pbSource
            // 
            this.pbSource.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
            this.pbSource.Location = new System.Drawing.Point(3, 3);
            this.pbSource.Name = "pbSource";
            this.pbSource.Size = new System.Drawing.Size(157, 260);
            this.pbSource.SizeMode = System.Windows.Forms.PictureBoxSizeMode.AutoSize;
            this.pbSource.TabIndex = 1;
            this.pbSource.TabStop = false;
            // 
            // pbPalette
            // 
            this.pbPalette.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
            this.pbPalette.Location = new System.Drawing.Point(166, 3);
            this.pbPalette.Name = "pbPalette";
            this.pbPalette.Size = new System.Drawing.Size(172, 260);
            this.pbPalette.SizeMode = System.Windows.Forms.PictureBoxSizeMode.AutoSize;
            this.pbPalette.TabIndex = 3;
            this.pbPalette.TabStop = false;
            // 
            // pbOutput
            // 
            this.pbOutput.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
            this.pbOutput.Location = new System.Drawing.Point(344, 3);
            this.pbOutput.Name = "pbOutput";
            this.pbOutput.Size = new System.Drawing.Size(172, 260);
            this.pbOutput.SizeMode = System.Windows.Forms.PictureBoxSizeMode.AutoSize;
            this.pbOutput.TabIndex = 4;
            this.pbOutput.TabStop = false;
            // 
            // btnStart
            // 
            this.btnStart.Anchor = ((System.Windows.Forms.AnchorStyles)((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Right)));
            this.btnStart.Location = new System.Drawing.Point(669, 417);
            this.btnStart.Name = "btnStart";
            this.btnStart.Size = new System.Drawing.Size(79, 42);
            this.btnStart.TabIndex = 4;
            this.btnStart.Text = "Start";
            this.btnStart.UseVisualStyleBackColor = true;
            this.btnStart.Click += new System.EventHandler(this.BtnStart_Click);
            // 
            // progressBar
            // 
            this.progressBar.Dock = System.Windows.Forms.DockStyle.Bottom;
            this.progressBar.Location = new System.Drawing.Point(0, 465);
            this.progressBar.Name = "progressBar";
            this.progressBar.Size = new System.Drawing.Size(748, 16);
            this.progressBar.TabIndex = 5;
            // 
            // imageList1
            // 
            this.imageList1.ColorDepth = System.Windows.Forms.ColorDepth.Depth8Bit;
            this.imageList1.ImageSize = new System.Drawing.Size(16, 16);
            this.imageList1.TransparentColor = System.Drawing.Color.Transparent;
            // 
            // lvFiles
            // 
            this.lvFiles.Anchor = ((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Left) 
            | System.Windows.Forms.AnchorStyles.Right)));
            this.lvFiles.CheckBoxes = true;
            this.lvFiles.HideSelection = false;
            this.lvFiles.Location = new System.Drawing.Point(12, 362);
            this.lvFiles.MultiSelect = false;
            this.lvFiles.Name = "lvFiles";
            this.lvFiles.Size = new System.Drawing.Size(651, 97);
            this.lvFiles.Sorting = System.Windows.Forms.SortOrder.Ascending;
            this.lvFiles.TabIndex = 7;
            this.lvFiles.UseCompatibleStateImageBehavior = false;
            this.lvFiles.View = System.Windows.Forms.View.List;
            this.lvFiles.ItemCheck += new System.Windows.Forms.ItemCheckEventHandler(this.lvFiles_ItemCheck);
            this.lvFiles.ItemSelectionChanged += new System.Windows.Forms.ListViewItemSelectionChangedEventHandler(this.lvFiles_ItemSelectionChanged);
            // 
            // lnTotSwap
            // 
            this.lnTotSwap.Anchor = ((System.Windows.Forms.AnchorStyles)((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Right)));
            this.lnTotSwap.Location = new System.Drawing.Point(669, 362);
            this.lnTotSwap.Name = "lnTotSwap";
            this.lnTotSwap.Size = new System.Drawing.Size(58, 14);
            this.lnTotSwap.TabIndex = 8;
            this.lnTotSwap.Text = "label1";
            // 
            // lnCurSwap
            // 
            this.lnCurSwap.Anchor = ((System.Windows.Forms.AnchorStyles)((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Right)));
            this.lnCurSwap.Location = new System.Drawing.Point(669, 385);
            this.lnCurSwap.Name = "lnCurSwap";
            this.lnCurSwap.Size = new System.Drawing.Size(58, 14);
            this.lnCurSwap.TabIndex = 9;
            this.lnCurSwap.Text = "label1";
            // 
            // Form1
            // 
            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
            this.BackColor = System.Drawing.SystemColors.ControlDark;
            this.ClientSize = new System.Drawing.Size(748, 481);
            this.Controls.Add(this.lnCurSwap);
            this.Controls.Add(this.lnTotSwap);
            this.Controls.Add(this.lvFiles);
            this.Controls.Add(this.progressBar);
            this.Controls.Add(this.btnStart);
            this.Controls.Add(this.panel);
            this.Name = "Form1";
            this.Text = "Form1";
            this.Load += new System.EventHandler(this.Form1_Load);
            this.panel.ResumeLayout(false);
            this.panel.PerformLayout();
            ((System.ComponentModel.ISupportInitialize)(this.pbSource)).EndInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbPalette)).EndInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbOutput)).EndInit();
            this.ResumeLayout(false);
            this.PerformLayout();

        }

        #endregion

        private System.Windows.Forms.FlowLayoutPanel panel;
        private System.Windows.Forms.PictureBox pbSource;
        private System.Windows.Forms.PictureBox pbPalette;
        private System.Windows.Forms.PictureBox pbOutput;
        private System.Windows.Forms.Button btnStart;
        private System.Windows.Forms.ProgressBar progressBar;
        private System.Windows.Forms.ImageList imageList1;
        private System.Windows.Forms.ListView lvFiles;
        private System.Windows.Forms.Label lnTotSwap;
        private System.Windows.Forms.Label lnCurSwap;
    }
}

Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace Palette
{
    static class Program
    {
        /// <summary>
        /// Punto di ingresso principale dell'applicazione.
        /// </summary>
        [STAThread]
        static void Main()
        {
            Application.EnableVisualStyles();
            Application.SetCompatibleTextRenderingDefault(false);
            Application.Run(new Form1());
        }
    }
}

Установите флажок «Небезопасный код» в свойстве проекта для компиляции.


4
ИМО этот дает лучшие результаты
figgycity50

9
Это совершенно невероятно с этой ужасной палитрой радуги.
Майкл Б

1
Потрясающе, победитель!
Jjrv

25

JS

Просто запустите на два URL изображения.

В качестве пакета JS вы можете запустить его самостоятельно в браузере. Предоставляются скрипты, которые играют с различными настройками. Пожалуйста, имейте в виду, что эта скрипка: http://jsfiddle.net/eithe/J7jEk/ будет всегда актуальной (содержать все настройки). По мере роста (добавляются новые опции) я не буду обновлять все предыдущие скрипты.

Вызовы

  • f("string to image (palette)", "string to image", {object of options});
  • f([[palette pixel], [palette pixel], ..., "string to image", {object of options});

Параметры

  • Алгоритм: 'balanced', 'surrounding', 'reverse', 'hsv', 'yiq','lab'
  • скорость: скорость анимации
  • Движение: true- если анимация показывает движение от начальной до конечной позиции
  • окружение: если 'surrounding'выбран алгоритм, это вес окружения, который будет учитываться при расчете веса данного пикселя
  • hsv: если 'hsv'выбран алгоритм, эти параметры определяют, насколько оттенок, насыщенность и значение влияют на вес
  • yiq: если 'qiv'выбран алгоритм, эти параметры определяют, насколько yiq влияет на вес
  • lab: если 'lab'выбран алгоритм, эти параметры определяют, насколько лаборатория влияет на вес
  • шум: сколько случайности будет добавлено к весам
  • уникальный: следует ли использовать пиксели из палитры только один раз (см. « Фотомозаика» или «Сколько программистов требуется, чтобы заменить лампочку?» )
  • pixel_1 / pixel_2 {ширина, высота}: размер пикселя (в пикселях: D)

Галерея (для витрин я всегда использую Mona Lisa & American Gothic, если не указано иное):


Анимация выглядит великолепно! но ваше изображение на один пиксель короче, чем обычно.
Увлечения Кэлвина

Увлечения Кэлвина - Пришлось разрезать его краской: P Вероятно, в этом и заключается разница. Обновлено!
eithed

Мне нравится этот: jsfiddle.net/q865W/4
Джастин

@ Quincunx Ура! При взвешенной версии он работает еще лучше
eithed

Ух ты. 0_0 Это действительно хорошо. jsfiddle.net/q865W/6
Джастин

24

C, с цветовым пространством Lab и улучшенным сглаживанием

Я сказал, что я сделал? Я врал. Я думаю, что алгоритм в моем другом решении является лучшим из всех, но Perl просто не достаточно быстр для выполнения сложных задач, поэтому я переопределил свою работу в C. Теперь он запускает все изображения в этом посте с более высоким качеством. чем оригинал, примерно через 3 минуты на изображение, и немного более низкое качество (уровень 0,5%) выполняется за 20-30 секунд на изображение. В основном вся работа выполняется с помощью ImageMagick, а сглаживание выполняется с использованием кубической сплайн-интерполяции ImageMagick, которая дает лучший / менее шаблонный результат.

Код

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <wand/MagickWand.h>

#define ThrowWandException(wand) \
{ \
  char \
  *description; \
  \
  ExceptionType \
  severity; \
  \
  description=MagickGetException(wand,&severity); \
  (void) fprintf(stderr,"%s %s %lu %s\n",GetMagickModule(),description); \
  description=(char *) MagickRelinquishMemory(description); \
  abort(); \
  exit(-1); \
}

int width, height; /* Target image size */
MagickWand *source_wand, *target_wand, *img_wand, *target_lab_wand, *img_lab_wand;
PixelPacket *source_pixels, *target_pixels, *img_pixels, *target_lab_pixels, *img_lab_pixels;
Image *img, *img_lab, *target, *target_lab;
CacheView *img_lab_view, *target_lab_view;
ExceptionInfo *e;

MagickWand *load_image(const char *filename) {
  MagickWand *img = NewMagickWand();
  if (!MagickReadImage(img, filename)) {
    ThrowWandException(img);
  }
  return img;
}

PixelPacket *get_pixels(MagickWand *wand) {
  PixelPacket *ret = GetAuthenticPixels(
      GetImageFromMagickWand(wand), 0, 0,
      MagickGetImageWidth(wand), MagickGetImageHeight(wand), e);
  CatchException(e);
  return ret;
}

void sync_pixels(MagickWand *wand) {
  SyncAuthenticPixels(GetImageFromMagickWand(wand), e);
  CatchException(e);
}

MagickWand *transfer_pixels() {
  if (MagickGetImageWidth(source_wand) * MagickGetImageHeight(source_wand)
      != MagickGetImageWidth(target_wand) * MagickGetImageHeight(target_wand)) {
    perror("size mismtch");
  }

  MagickWand *img_wand = CloneMagickWand(target_wand);
  img_pixels = get_pixels(img_wand);
  memcpy(img_pixels, source_pixels, 
      MagickGetImageWidth(img_wand) * MagickGetImageHeight(img_wand) * sizeof(PixelPacket));

  sync_pixels(img_wand);
  return img_wand;
}

MagickWand *image_to_lab(MagickWand *img) {
  MagickWand *lab = CloneMagickWand(img);
  TransformImageColorspace(GetImageFromMagickWand(lab), LabColorspace);
  return lab;
}

int lab_distance(PixelPacket *a, PixelPacket *b) {
  int l_diff = (GetPixelL(a) - GetPixelL(b)) / 256,
      a_diff = (GetPixela(a) - GetPixela(b)) / 256,
      b_diff = (GetPixelb(a) - GetPixelb(b)) / 256;

  return (l_diff * l_diff + a_diff * a_diff + b_diff * b_diff);
}

int should_swap(int x1, int x2, int y1, int y2) {
  int dist = lab_distance(&img_lab_pixels[width * y1 + x1], &target_lab_pixels[width * y1 + x1])
           + lab_distance(&img_lab_pixels[width * y2 + x2], &target_lab_pixels[width * y2 + x2]);
  int swapped_dist = lab_distance(&img_lab_pixels[width * y2 + x2], &target_lab_pixels[width * y1 + x1])
                   + lab_distance(&img_lab_pixels[width * y1 + x1], &target_lab_pixels[width * y2 + x2]);

  return swapped_dist < dist;
}

void pixel_multiply_add(MagickPixelPacket *dest, PixelPacket *src, double mult) {
  dest->red += (double)GetPixelRed(src) * mult;
  dest->green += ((double)GetPixelGreen(src) - 32768) * mult;
  dest->blue += ((double)GetPixelBlue(src) - 32768) * mult;
}

#define min(x,y) (((x) < (y)) ? (x) : (y))
#define max(x,y) (((x) > (y)) ? (x) : (y))

double mpp_distance(MagickPixelPacket *a, MagickPixelPacket *b) {
  double l_diff = QuantumScale * (a->red - b->red),
         a_diff = QuantumScale * (a->green - b->green),
         b_diff = QuantumScale * (a->blue - b->blue);
  return (l_diff * l_diff + a_diff * a_diff + b_diff * b_diff);
}

void do_swap(PixelPacket *pix, int x1, int x2, int y1, int y2) {
  PixelPacket tmp = pix[width * y1 + x1];
  pix[width * y1 + x1] = pix[width * y2 + x2];
  pix[width * y2 + x2] = tmp;
}

int should_swap_dither(double detail, int x1, int x2, int y1, int y2) {
//  const InterpolatePixelMethod method = Average9InterpolatePixel;
  const InterpolatePixelMethod method = SplineInterpolatePixel;

  MagickPixelPacket img1, img2, img1s, img2s, target1, target2;
  GetMagickPixelPacket(img, &img1);
  GetMagickPixelPacket(img, &img2);
  GetMagickPixelPacket(img, &img1s);
  GetMagickPixelPacket(img, &img2s);
  GetMagickPixelPacket(target, &target1);
  GetMagickPixelPacket(target, &target2);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x1, y1, &img1, e);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x2, y2, &img2, e);
  InterpolateMagickPixelPacket(target, target_lab_view, method, x1, y1, &target1, e);
  InterpolateMagickPixelPacket(target, target_lab_view, method, x2, y2, &target2, e);
  do_swap(img_lab_pixels, x1, x2, y1, y2);
//  sync_pixels(img_wand);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x1, y1, &img1s, e);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x2, y2, &img2s, e);
  do_swap(img_lab_pixels, x1, x2, y1, y2);
//  sync_pixels(img_wand);

  pixel_multiply_add(&img1, &img_lab_pixels[width * y1 + x1], detail);
  pixel_multiply_add(&img2, &img_lab_pixels[width * y2 + x2], detail);
  pixel_multiply_add(&img1s, &img_lab_pixels[width * y2 + x2], detail);
  pixel_multiply_add(&img2s, &img_lab_pixels[width * y1 + x1], detail);
  pixel_multiply_add(&target1, &target_lab_pixels[width * y1 + x1], detail);
  pixel_multiply_add(&target2, &target_lab_pixels[width * y2 + x2], detail);

  double dist = mpp_distance(&img1, &target1)
              + mpp_distance(&img2, &target2);
  double swapped_dist = mpp_distance(&img1s, &target1)
                      + mpp_distance(&img2s, &target2);

  return swapped_dist + 1.0e-4 < dist;
}

int main(int argc, char *argv[]) {
  if (argc != 7) {
    fprintf(stderr, "Usage: %s source.png target.png dest nodither_pct dither_pct detail\n", argv[0]);
    return 1;
  }
  char *source_filename = argv[1];
  char *target_filename = argv[2];
  char *dest = argv[3];
  double nodither_pct = atof(argv[4]);
  double dither_pct = atof(argv[5]);
  double detail = atof(argv[6]) - 1;
  const int SWAPS_PER_LOOP = 1000000;
  int nodither_limit = ceil(SWAPS_PER_LOOP * nodither_pct / 100);
  int dither_limit = ceil(SWAPS_PER_LOOP * dither_pct / 100);
  int dither = 0, frame = 0;
  char outfile[256], cmdline[1024];
  sprintf(outfile, "out/%s.png", dest);

  MagickWandGenesis();
  e = AcquireExceptionInfo();
  source_wand = load_image(source_filename);
  source_pixels = get_pixels(source_wand);
  target_wand = load_image(target_filename);
  target_pixels = get_pixels(target_wand);
  img_wand = transfer_pixels();
  img_pixels = get_pixels(img_wand);
  target_lab_wand = image_to_lab(target_wand);
  target_lab_pixels = get_pixels(target_lab_wand);
  img_lab_wand = image_to_lab(img_wand);
  img_lab_pixels = get_pixels(img_lab_wand);
  img = GetImageFromMagickWand(img_lab_wand);
  target = GetImageFromMagickWand(target_lab_wand);
  img_lab_view = AcquireAuthenticCacheView(img, e);
  target_lab_view = AcquireAuthenticCacheView(target,e);
  CatchException(e);

  width = MagickGetImageWidth(img_wand);
  height = MagickGetImageHeight(img_wand);

  while (1) {
    int swaps_made = 0;
    for (int n = 0 ; n < SWAPS_PER_LOOP ; n++) {
      int x1 = rand() % width,
          x2 = rand() % width,
          y1 = rand() % height,
          y2 = rand() % height;

      int swap = dither ?
        should_swap_dither(detail, x1, x2, y1, y2)
        : should_swap(x1, x2, y1, y2);

      if (swap) {
        do_swap(img_pixels, x1, x2, y1, y2);
        do_swap(img_lab_pixels, x1, x2, y1, y2);
        swaps_made ++;
      }
    }

    sync_pixels(img_wand);
    if (!MagickWriteImages(img_wand, outfile, MagickTrue)) {
      ThrowWandException(img_wand);
    }
    img_pixels = get_pixels(img_wand);
    sprintf(cmdline, "cp out/%s.png anim/%s/%05i.png", dest, dest, frame++);
    system(cmdline);

    if (!dither && swaps_made < nodither_limit) {
      sprintf(cmdline, "cp out/%s.png out/%s-nodither.png", dest, dest);
      system(cmdline);
      dither = 1;
    } else if (dither && swaps_made < dither_limit)
      break;
  }

  return 0;
}

Компилировать с

gcc -std=gnu99 -O3 -march=native -ffast-math \
  -o transfer `pkg-config --cflags MagickWand` \
  transfer.c `pkg-config --libs MagickWand` -lm

Результаты

В основном то же, что и версия Perl, только чуть лучше, но есть несколько исключений. Дизеринг в целом менее заметен. Scream -> Starry Night не имеет эффекта "пылающей горы", а Camaro выглядит менее блестяще с серыми пикселями. Я думаю, что в коде цветового пространства версии Perl есть ошибка с пикселями низкой насыщенности.

Американская готическая палитра

Палитра мона лиза

Звездная ночь палитра

Палитра криков

Палитра сфер

Мустанг (палитра Камаро)

Камаро (палитра мустанга)


Да, сэр, ваш действительно лучший там. Почему в C он генерирует .5% хуже?
RMalke

@RMalke Это только хуже, когда он позволяет ему работать в течение 20-30 секунд.
trlkly

Не могли бы вы опубликовать значения, которые вы использовали nodither_pct, dither_pctи detailв этом примере? Я запускаю вашу программу с разными комбинациями, но для моих изображений они кажутся неоптимальными, и палитры близки к вашим, поэтому ... пожалуйста?
Андрей Костырка,

@ AndreïKostyrka 0.1 0.1 1.6- это значения, которые я использовал при создании этих изображений.
Хоббс

@ AndreïKostyrka 0.5 0.5 1.6должен обеспечить почти такое же высокое качество при гораздо более высокой скорости.
Хоббс

23

Ближайшее значение HSL с распространением ошибок и дизерингом

Я сделал небольшие изменения в коде, который я использовал для своих изображений AllRGB . Он предназначен для обработки 16-мегапиксельных изображений с разумными ограничениями по времени и памяти, поэтому он использует некоторые классы структуры данных, которых нет в стандартной библиотеке; однако я их пропустил, потому что здесь уже много кода, и это интересный код.

Для AllRGB я вручную настраиваю вейвлеты, которые отдают приоритет определенным областям изображения; для этого неуправляемого использования я выбираю один вейвлет, который предполагает макет правила третей, ставя основной интерес на треть пути сверху вниз.

Американская готика с палитрой от Моны Лизы Мона Лиза с палитрой из американской готики

Мой любимый из 36:

Река с палитрой от Моны Лизы

Полное декартово произведение (изображение, палитра)

package org.cheddarmonk.graphics;

import org.cheddarmonk.util.*;
import java.awt.Point;
import java.awt.image.*;
import java.io.File;
import java.util.Random;
import javax.imageio.ImageIO;

public class PaletteApproximator {
    public static void main(String[] args) throws Exception {
        // Adjust this to fine-tune for the areas which are most important.
        float[] waveletDefault = new float[] {0.5f, 0.333f, 0.5f, 0.5f, 1};

        generateAndSave(args[0], args[1], args[2], waveletDefault);
    }

    private static void generateAndSave(String paletteFile, String fileIn, String fileOut, float[]... wavelets) throws Exception {
        BufferedImage imgIn = ImageIO.read(new File(fileIn));
        int w = imgIn.getWidth(), h = imgIn.getHeight();

        int[] buf = new int[w * h];
        imgIn.getRGB(0, 0, w, h, buf, 0, w);

        SimpleOctTreeInt palette = loadPalette(paletteFile);
        generate(palette, buf, w, h, wavelets);

        // Masks for R, G, B, A.
        final int[] off = new int[]{0xff0000, 0xff00, 0xff, 0xff000000};
        // The corresponding colour model.
        ColorModel colourModel = ColorModel.getRGBdefault();
        DataBufferInt dbi = new DataBufferInt(buf, buf.length);
        Point origin = new Point(0, 0);
        WritableRaster raster = Raster.createPackedRaster(dbi, w, h, w, off, origin);
        BufferedImage imgOut = new BufferedImage(colourModel, raster, false, null);

        ImageIO.write(imgOut, "PNG", new File(fileOut));
    }

    private static SimpleOctTreeInt loadPalette(String paletteFile) throws Exception {
        BufferedImage img = ImageIO.read(new File(paletteFile));
        int w = img.getWidth(), h = img.getHeight();

        int[] buf = new int[w * h];
        img.getRGB(0, 0, w, h, buf, 0, w);

        // Parameters tuned for 4096x4096
        SimpleOctTreeInt octtree = new SimpleOctTreeInt(0, 1, 0, 1, 0, 1, 16, 12);
        for (int i = 0; i < buf.length; i++) {
            octtree.add(buf[i], transform(buf[i]));
        }

        return octtree;
    }

    private static void generate(SimpleOctTreeInt octtree, int[] buf, int w, int h, float[]... wavelets) {
        int m = w * h;

        LeanBinaryHeapInt indices = new LeanBinaryHeapInt();
        Random rnd = new Random();
        for (int i = 0; i < m; i++) {
            float x = (i % w) / (float)w, y = (i / w) / (float)w;

            float weight = 0;
            for (float[] wavelet : wavelets) {
                weight += wavelet[4] * Math.exp(-Math.pow((x - wavelet[0]) / wavelet[2], 2) - Math.pow((y - wavelet[1]) / wavelet[3], 2));
            }

            // Random element provides some kind of dither
            indices.insert(i, -weight + 0.2f * rnd.nextFloat());
        }

        // Error diffusion buffers.
        float[] errx = new float[m], erry = new float[m], errz = new float[m];

        for (int i = 0; i < m; i++) {
            int idx = indices.pop();
            int x = idx % w, y = idx / w;

            // TODO Bicubic interpolation? For the time being, prefer to scale the input image externally...
            float[] tr = transform(buf[x + w * y]);
            tr[0] += errx[idx]; tr[1] += erry[idx]; tr[2] += errz[idx];

            int pixel = octtree.nearestNeighbour(tr, 2);
            buf[x + y * w] = 0xff000000 | pixel;

            // Don't reuse pixels.
            float[] trPix = transform(pixel);
            boolean ok = octtree.remove(pixel, trPix);
            if (!ok) throw new IllegalStateException("Failed to remove from octtree");

            // Propagate error in 4 directions, not caring whether or not we've already done that pixel.
            // This will lose some error, but that might be a good thing.
            float dx = (tr[0] - trPix[0]) / 4, dy = (tr[1] - trPix[1]) / 4, dz = (tr[2] - trPix[2]) / 4;
            if (x > 0) {
                errx[idx - 1] += dx;
                erry[idx - 1] += dy;
                errz[idx - 1] += dz;
            }
            if (x < w - 1) {
                errx[idx + 1] += dx;
                erry[idx + 1] += dy;
                errz[idx + 1] += dz;
            }
            if (y > 0) {
                errx[idx - w] += dx;
                erry[idx - w] += dy;
                errz[idx - w] += dz;
            }
            if (y < h - 1) {
                errx[idx + w] += dx;
                erry[idx + w] += dy;
                errz[idx + w] += dz;
            }
        }
    }

    private static final float COS30 = (float)Math.sqrt(3) / 2;
    private static float[] transform(int rgb) {
        float r = ((rgb >> 16) & 0xff) / 255.f;
        float g = ((rgb >> 8) & 0xff) / 255.f;
        float b = (rgb & 0xff) / 255.f;

        // HSL cone coords
        float cmax = (r > g) ? r : g; if (b > cmax) cmax = b;
        float cmin = (r < g) ? r : g; if (b < cmin) cmin = b;
        float[] cone = new float[3];
        cone[0] = (cmax + cmin) / 2;
        cone[1] = 0.5f * (1 + r - (g + b) / 2);
        cone[2] = 0.5f * (1 + (g - b) * COS30);
        return cone;
    }
}

22

питон

Не очень по кодам, ни по результатам.

from blist import blist
from PIL import Image
import random

def randpop(colors):
    j = random.randrange(len(colors))
    return colors.pop(j)

colors = blist(Image.open('in1.png').getdata())
random.shuffle(colors)
target = Image.open('in2.png')

out = target.copy()
data = list(list(i) for i in out.getdata())

assert len(data) == len(colors)

w, h = out.size

coords = []
for i in xrange(h):
    for j in xrange(w):
        coords.append((i, j))

# Adjust color balance
dsum = [sum(d[i] for d in data) for i in xrange(3)]
csum = [sum(c[i] for c in colors) for i in xrange(3)]
adjust = [(csum[i] - dsum[i]) // len(data) for i in xrange(3)]
for i, j in coords:
    for k in xrange(3):
        data[i*w + j][k] += adjust[k]

random.shuffle(coords)

# larger value here gives better results but take longer
choose = 100
threshold = 10

done = set()
while len(coords):
    if not len(coords) % 1000:
        print len(coords) // 1000
    i, j = coords.pop()
    ind = i*w + j
    done.add(ind)
    t = data[ind]
    dmin = 255*3
    kmin = 0
    choices = []
    while colors and len(choices) < choose:
        k = len(choices)
        choices.append(randpop(colors))
        c = choices[-1]
        d = sum(abs(t[l] - c[l]) for l in xrange(3))
        if d < dmin:
            dmin = d
            kmin = k
            if d < threshold:
                break
    c = choices.pop(kmin)
    data[ind] = c
    colors.extend(choices)

    # Push the error to nearby pixels for dithering
    if ind + 1 < len(data) and ind + 1 not in done:
        ind2 = ind + 1
    elif ind + w < len(data) and ind + w not in done:
        ind2 = ind + w
    elif ind > 0 and ind - 1 not in done:
        ind2 = ind - 1
    elif ind - w > 0 and ind - w not in done:
        ind2 = ind - w
    else:
        ind2 = None
    if ind2 is not None:
        for k in xrange(3):
            err = abs(t[k] - c[k])
            data[ind2][k] += err

out.putdata(data)
out.save('out.png')

Возможные улучшения:

  • более разумная коррекция цвета?
  • Метрика лучшего качества?
  • нажмите на ошибку для всех окружающих пикселей, а не один

Гадкий (1-> 2): 1-> 2

Немного лучше (2-> 1): 2-> 1

Приличный (2-> 3): 2-> 3

Как плохой raytracer (3-> 4): 3-> 4

Обман - используйте все хорошие пиксели в верхней половине и утверждайте, что краска закончилась: 1-> 2


3
Последняя ... интересная идея. Но все еще не голосование.
Джон Дворак

20

Python (с использованием kd-дерева и светимости)

Хороший вызов. Я решил пойти с подходом kd-дерева. Таким образом, основная идея использования подхода kd-tree заключается в том, что он разделяет цвета и яркость в соответствии с их присутствием на изображении.

Таким образом, для дерева kd первый вид основан на красном. Он разделяет все цвета на две примерно равные группы красных (светло-красный и темно-красный). Затем он разделяет эти два раздела вдоль зелени. Затем синий и затем светимость, а затем снова красный. И так до тех пор, пока дерево не будет построено. В этом подходе я построил kd-дерево для исходного изображения и конечного изображения. После этого я сопоставил дерево от источника до места назначения и переписал данные о цвете файла места назначения. Все результаты показаны здесь .

Некоторые примеры:

Мона Лиза -> Американская готика

Мона Лиза американская готика (стиль мона_лисы)

Американская готика -> Мона Лиза

американская готика mona_lisa (американский готический стиль)

Звездная ночь -> Крик

Звездная ночь звездный крик

Крик -> Звездная ночь

орать кричащие звезды

Радужные сферы

введите описание изображения здесь Мона Лиза шарики кричащие шары

Вот короткометражный фильм с использованием создателя кадров @ Calvin's Hobbies:

введите описание изображения здесь

А теперь код :-)

from PIL import Image

""" Computation of hue, saturation, luminosity.
Based on http://stackoverflow.com/questions/3732046/how-do-you-get-the-hue-of-a-xxxxxx-colour
"""
def rgbToLsh(t):
    r = t[0]
    g = t[1]
    b = t[2]
    r /= 255.
    g /= 255.
    b /= 255.
    vmax = max([r, g, b])
    vmin = min([r, g, b]);
    h = s = l = (vmax + vmin) / 2.;

    if (vmax == vmin):
        h = s = 0.  # achromatic
    else:
        d = vmax - vmin;
        if l > 0.5:
            s = d / (2. - vmax - vmin)
        else:
            s = d / (vmax + vmin);
        if vmax == r:
            if g<b: 
                m = 6. 
            else: 
                m = 0. 
            h = (g - b) / d + m
        elif vmax == g: 
            h = (b - r) / d + 2.
        elif vmax == b: 
            h = (r - g) / d + 4.
        h /= 6.;
    return [l,s,h];



""" KDTree implementation.
Based on https://code.google.com/p/python-kdtree/ 
"""
__version__ = "1r11.1.2010"
__all__ = ["KDTree"]

def square_distance(pointA, pointB):
    # squared euclidean distance
    distance = 0
    dimensions = len(pointA) # assumes both points have the same dimensions
    for dimension in range(dimensions):
        distance += (pointA[dimension] - pointB[dimension])**2
    return distance

class KDTreeNode():
    def __init__(self, point, left, right):
        self.point = point
        self.left = left
        self.right = right

    def is_leaf(self):
        return (self.left == None and self.right == None)

class KDTreeNeighbours():
    """ Internal structure used in nearest-neighbours search.
    """
    def __init__(self, query_point, t):
        self.query_point = query_point
        self.t = t # neighbours wanted
        self.largest_distance = 0 # squared
        self.current_best = []

    def calculate_largest(self):
        if self.t >= len(self.current_best):
            self.largest_distance = self.current_best[-1][1]
        else:
            self.largest_distance = self.current_best[self.t-1][1]

    def add(self, point):
        sd = square_distance(point, self.query_point)
        # run through current_best, try to find appropriate place
        for i, e in enumerate(self.current_best):
            if i == self.t:
                return # enough neighbours, this one is farther, let's forget it
            if e[1] > sd:
                self.current_best.insert(i, [point, sd])
                self.calculate_largest()
                return
        # append it to the end otherwise
        self.current_best.append([point, sd])
        self.calculate_largest()

    def get_best(self):
        return [element[0] for element in self.current_best[:self.t]]



class KDTree():
    """ KDTree implementation.

        Example usage:

            from kdtree import KDTree

            data = <load data> # iterable of points (which are also iterable, same length)
            point = <the point of which neighbours we're looking for>

            tree = KDTree.construct_from_data(data)
            nearest = tree.query(point, t=4) # find nearest 4 points
    """

    def __init__(self, data):

        self.data_listing = []
        def build_kdtree(point_list, depth):

            # code based on wikipedia article: http://en.wikipedia.org/wiki/Kd-tree
            if not point_list:
                return None

            # select axis based on depth so that axis cycles through all valid values
            axis = depth % 4 #len(point_list[0]) # assumes all points have the same dimension

            # sort point list and choose median as pivot point,
            # TODO: better selection method, linear-time selection, distribution
            point_list.sort(key=lambda point: point[axis])
            median = len(point_list)/2 # choose median

            # create node and recursively construct subtrees
            node = KDTreeNode(point=point_list[median],
                              left=build_kdtree(point_list[0:median], depth+1),
                              right=build_kdtree(point_list[median+1:], depth+1))

            # add point to listing                   
            self.data_listing.append(point_list[median])
            return node

        self.root_node = build_kdtree(data, depth=0)

    @staticmethod
    def construct_from_data(data):
        tree = KDTree(data)
        return tree

    def query(self, query_point, t=1):
        statistics = {'nodes_visited': 0, 'far_search': 0, 'leafs_reached': 0}

        def nn_search(node, query_point, t, depth, best_neighbours):
            if node == None:
                return

            #statistics['nodes_visited'] += 1

            # if we have reached a leaf, let's add to current best neighbours,
            # (if it's better than the worst one or if there is not enough neighbours)
            if node.is_leaf():
                #statistics['leafs_reached'] += 1
                best_neighbours.add(node.point)
                return

            # this node is no leaf

            # select dimension for comparison (based on current depth)
            axis = depth % len(query_point)

            # figure out which subtree to search
            near_subtree = None # near subtree
            far_subtree = None # far subtree (perhaps we'll have to traverse it as well)

            # compare query_point and point of current node in selected dimension
            # and figure out which subtree is farther than the other
            if query_point[axis] < node.point[axis]:
                near_subtree = node.left
                far_subtree = node.right
            else:
                near_subtree = node.right
                far_subtree = node.left

            # recursively search through the tree until a leaf is found
            nn_search(near_subtree, query_point, t, depth+1, best_neighbours)

            # while unwinding the recursion, check if the current node
            # is closer to query point than the current best,
            # also, until t points have been found, search radius is infinity
            best_neighbours.add(node.point)

            # check whether there could be any points on the other side of the
            # splitting plane that are closer to the query point than the current best
            if (node.point[axis] - query_point[axis])**2 < best_neighbours.largest_distance:
                #statistics['far_search'] += 1
                nn_search(far_subtree, query_point, t, depth+1, best_neighbours)

            return

        # if there's no tree, there's no neighbors
        if self.root_node != None:
            neighbours = KDTreeNeighbours(query_point, t)
            nn_search(self.root_node, query_point, t, depth=0, best_neighbours=neighbours)
            result = neighbours.get_best()
        else:
            result = []

        #print statistics
        return result


#List of files: 
files = ['JXgho.png','N6IGO.png','c5jq1.png','itzIe.png','xPAwA.png','y2VZJ.png']

#Loop over source files 
for im_orig in range(len(files)):
    srch = Image.open(files[im_orig])   #Open file handle 
    src = srch.load();                  #Load file  

    # Build data structure (R,G,B,lum,xpos,ypos) for source file
    srcdata =  [(src[i,j][0],src[i,j][1],src[i,j][2],rgbToLsh(src[i,j])[0],i,j) \
                     for i in range(srch.size[0]) \
                     for j in range(srch.size[1])]  

    # Build kd-tree for source
    srctree = KDTree.construct_from_data(srcdata)

    for im in range(len(files)):
        desh = Image.open(files[im])
        des = desh.load();

        # Build data structure (R,G,B,lum,xpos,ypos) for destination file
        desdata =  [(des[i,j][0],des[i,j][1],des[i,j][2],rgbToLsh(des[i,j]),i,j) \
                     for i in range(desh.size[0]) \
                     for j in range(desh.size[1])]  

        # Build kd-tree for destination
        destree = KDTree.construct_from_data(desdata)

        # Switch file mode
        desh.mode = srch.mode
        for k in range(len(srcdata)):
            # Get locations from kd-tree sorted data
            i   = destree.data_listing[k][-2]
            j   = destree.data_listing[k][-1]
            i_s = srctree.data_listing[k][-2]
            j_s = srctree.data_listing[k][-1]

            # Overwrite original colors with colors from source file 
            des[i,j] = src[i_s,j_s]

        # Save to disk  
        desh.save(files[im_orig].replace('.','_'+`im`+'.'))

Я не заметил этого год назад, но это довольно хорошо!
Хоббс

16

питон

Просто чтобы держать мяч в движении, вот мой собственный простой и мучительно медленный ответ.

import Image

def countColors(image):
    colorCounts = {}
    for color in image.getdata():
        if color in colorCounts:
            colorCounts[color] += 1
        else:
            colorCounts[color] = 1
    return colorCounts

def colorDist(c1, c2):
    def ds(c1, c2, i):
        return (c1[i] - c2[i])**2
    return (ds(c1, c2, 0) + ds(c1, c2, 1) + ds(c1, c2, 2))**0.5

def findClosestColor(palette, color):
    closest = None
    minDist = (3*255**2)**0.5
    for c in palette:
        dist = colorDist(color, c)
        if dist < minDist:
            minDist = dist
            closest = c
    return closest

def removeColor(palette, color):
    if palette[color] == 1:
        del palette[color]
    else:
        palette[color] -= 1

def go(paletteFile, sourceFile):
    palette = countColors(Image.open(paletteFile).convert('RGB'))
    source = Image.open(sourceFile).convert('RGB')
    copy = Image.new('RGB', source.size)
    w, h = copy.size

    for x in range(w):
        for y in range(h):
            c = findClosestColor(palette, source.getpixel((x, y)))
            removeColor(palette, c)
            copy.putpixel((x, y), c)
        print x #print progress
    copy.save('copy.png')

#the respective file paths go here
go('../ag.png', '../r.png')

Для каждого пикселя в источнике он ищет неиспользуемый пиксель в палитре, который находится ближе всего в цветовом кубе RGB. Он в основном такой же, как алгоритм Quincunx, но без случайности и с другой функцией сравнения цветов.

Вы можете сказать, что я двигаюсь слева направо, поскольку правая сторона изображения имеет гораздо меньше деталей из-за истощения схожих цветов.

Река из американской готики

Река из американской готики

Мона Лиза из Радужных Сфер

Мона Лиза из Радужных Сфер


1
Mme. Лиза немного желтоватая ...
Томсминг

4
Мне очень нравится переход в реке от американской готики от левого 'славного' к правому 'абстрактному' =)
flawr

12

Haskell

Я попробовал несколько разных подходов, используя поиск ближайшего соседа, прежде чем остановиться на этом решении (что на самом деле было моей первой идеей). Сначала я преобразовываю пиксельные форматы изображений в YCbCr и создаю два списка, содержащих их пиксельные данные. Затем списки сортируются, отдавая приоритет значению яркости. После этого я просто заменяю отсортированный список пикселей входного изображения на изображение палитры, а затем возвращаю его к исходному порядку и использую его для создания нового изображения.

module Main where

import System.Environment    (getArgs)
import System.Exit           (exitSuccess, exitFailure)
import System.Console.GetOpt (getOpt, ArgOrder(..), OptDescr(..), ArgDescr(..))
import Data.List             (sortBy)

import Codec.Picture
import Codec.Picture.Types

import qualified Data.Vector as V

main :: IO ()
main = do
    (ioOpts, _) <- getArgs >>= getOpts
    opts        <- ioOpts
    image       <- loadImage $ imageFile opts
    palette     <- loadImage $ paletteFile opts
    case swapPalette image palette of
      Nothing -> do
          putStrLn "Error: image and palette dimensions do not match"
          exitFailure
      Just img ->
          writePng (outputFile opts) img

swapPalette :: Image PixelYCbCr8 -> Image PixelYCbCr8 -> Maybe (Image PixelRGB8)
swapPalette img pal
    | area1 == area2 =
        let cmpCr (_, (PixelYCbCr8 _ _ r1)) (_, (PixelYCbCr8 _ _ r2)) = r1 `compare` r2
            cmpCb (_, (PixelYCbCr8 _ c1 _)) (_, (PixelYCbCr8 _ c2 _)) = c1 `compare` c2
            cmpY  (_, (PixelYCbCr8 y1 _ _)) (_, (PixelYCbCr8 y2 _ _)) = y2 `compare` y1
            w       = imageWidth  img
            h       = imageHeight img
            imgData = sortBy cmpY $ sortBy cmpCr $ sortBy cmpCb $ zip [1 :: Int ..] $ getPixelList img
            palData = sortBy cmpY $ sortBy cmpCr $ sortBy cmpCb $ zip [1 :: Int ..] $ getPixelList pal
            newData = zipWith (\(n, _) (_, p) -> (n, p)) imgData palData
            pixData = map snd $ sortBy (\(n1, _) (n2, _) -> n1 `compare` n2) newData
            dataVec = V.reverse $ V.fromList pixData
        in  Just $ convertImage $ generateImage (lookupPixel dataVec w h) w h
    | otherwise = Nothing
    where area1 = (imageWidth img) * (imageHeight img)
          area2 = (imageWidth pal) * (imageHeight pal)

lookupPixel :: V.Vector PixelYCbCr8 -> Int -> Int -> Int -> Int -> PixelYCbCr8
lookupPixel vec w h x y = vec V.! i
    where i = flattenIndex w h x y

getPixelList :: Image PixelYCbCr8 -> [PixelYCbCr8]
getPixelList img = foldl (\ps (x, y) -> (pixelAt img x y):ps) [] coords
    where coords = [(x, y) | x <- [0..(imageWidth img) - 1], y <- [0..(imageHeight img) - 1]]

flattenIndex :: Int -> Int -> Int -> Int -> Int
flattenIndex _ h x y = y + (x * h)

-------------------------------------------------
-- Command Line Option Functions
-------------------------------------------------

getOpts :: [String] -> IO (IO Options, [String])
getOpts args = case getOpt Permute options args of
    (opts, nonOpts, []) -> return (foldl (>>=) (return defaultOptions) opts, nonOpts)
    (_, _, errs)        -> do
        putStrLn $ concat errs
        printUsage
        exitFailure

data Options = Options
  { imageFile   :: Maybe FilePath
  , paletteFile :: Maybe FilePath
  , outputFile  :: FilePath
  }

defaultOptions :: Options
defaultOptions = Options
  { imageFile   = Nothing
  , paletteFile = Nothing
  , outputFile  = "out.png"
  }

options :: [OptDescr (Options -> IO Options)]
options = [ Option ['i'] ["image"]   (ReqArg setImage   "FILE") "",
            Option ['p'] ["palette"] (ReqArg setPalette "FILE") "",
            Option ['o'] ["output"]  (ReqArg setOutput  "FILE") "",
            Option ['v'] ["version"] (NoArg showVersion)        "",
            Option ['h'] ["help"]    (NoArg exitPrintUsage)     ""]

setImage :: String -> Options -> IO Options
setImage image opts = return $ opts { imageFile = Just image }

setPalette :: String -> Options -> IO Options
setPalette palette opts = return $ opts { paletteFile = Just palette }

setOutput :: String -> Options -> IO Options
setOutput output opts = return $ opts { outputFile = output }

printUsage :: IO ()
printUsage = do
    putStrLn "Usage: repix [OPTION...] -i IMAGE -p PALETTE [-o OUTPUT]"
    putStrLn "Rearrange pixels in the palette file to closely resemble the given image."
    putStrLn ""
    putStrLn "-i, --image    specify the image to transform"
    putStrLn "-p, --palette  specify the image to use as the palette"
    putStrLn "-o, --output   specify the output image file"
    putStrLn ""
    putStrLn "-v, --version  display version information and exit"
    putStrLn "-h, --help     display this help and exit"

exitPrintUsage :: a -> IO Options
exitPrintUsage _ = do
    printUsage
    exitSuccess

showVersion :: a -> IO Options
showVersion _ = do
    putStrLn "Pixel Rearranger v0.1"
    exitSuccess

-------------------------------------------------
-- Image Loading Util Functions
-------------------------------------------------

loadImage :: Maybe FilePath -> IO (Image PixelYCbCr8)
loadImage Nothing     = do
    printUsage
    exitFailure
loadImage (Just path) = do
    rdImg <- readImage path
    case rdImg of
      Left err -> do
          putStrLn err
          exitFailure
      Right img -> getRGBImage img

getRGBImage :: DynamicImage -> IO (Image PixelYCbCr8)
getRGBImage dynImg =
    case dynImg of
      ImageYCbCr8 img -> return img
      ImageRGB8   img -> return $ convertImage img
      ImageY8     img -> return $ convertImage (promoteImage img :: Image PixelRGB8)
      ImageYA8    img -> return $ convertImage (promoteImage img :: Image PixelRGB8)
      ImageCMYK8  img -> return $ convertImage (convertImage img :: Image PixelRGB8)
      ImageRGBA8  img -> return $ convertImage (pixelMap dropTransparency img :: Image PixelRGB8)
      _               -> do
          putStrLn "Error: incompatible image type."
          exitFailure

Результаты

Изображения, которые создает моя программа, имеют тенденцию быть менее яркими, чем многие другие решения, и они плохо справляются с большими сплошными областями или градиентами.

Вот ссылка на полный альбом.

Американская готика -> Мона Лиза

Мона Лиза -> Американская готика

Сферы -> Мона Лиза

Крик -> Звездная ночь

Крик -> Сферы


3
Мне нравится сглаживание (Сферы -> Мона Лиза), но откуда взялись эти уродливые артефакты (Крик -> Сферы)?
Джон Дворак

1
Артефакты являются побочным эффектом того, как мой алгоритм сортирует пиксели. Прямо сейчас красная разница каждого пикселя имеет приоритет над синей разницей на этапе сортировки, что означает, что похожие цвета во входном изображении могут быть сопоставлены с очень разными цветами из палитры изображения. Тем не менее, я почти уверен, что именно этот эффект вызывает явное сглаживание на изображениях, таких как Сферы -> Мона Лиза, поэтому я решил оставить его.
ChaseC

9

Ява

Вдохновленный предыдущим ответом Java от Quincunx

     package paletteswap;

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

import javax.imageio.ImageIO;

public class Test
{
    public static class Bits
    {

        public static BitSet convert( int value )
        {
            BitSet bits = new BitSet();
            int index = 0;
            while ( value != 0L )
            {
                if ( value % 2 != 0 )
                {
                    bits.set( index );
                }
                ++index;
                value = value >>> 1;
            }
            return bits;
        }

        public static int convert( BitSet bits )
        {
            int value = 0;
            for ( int i = 0; i < bits.length(); ++i )
            {
                value += bits.get( i ) ? ( 1 << i ) : 0;
            }
            return value;
        }
    }

    public static void main( String[] args ) throws IOException
    {
        BufferedImage source = ImageIO.read( resource( "river.png" ) ); // My names
                                                                            // for the
                                                                            // files
        BufferedImage palette = ImageIO.read( resource( "farmer.png" ) );
        BufferedImage result = rearrange( source, palette );
        ImageIO.write( result, "png", resource( "result.png" ) );
    }

    public static BufferedImage rearrange( BufferedImage source, BufferedImage palette )
    {
        BufferedImage result = new BufferedImage( source.getWidth(), source.getHeight(), BufferedImage.TYPE_INT_RGB );

        // This creates a list of points in the Source image.
        // Then, we shuffle it and will draw points in that order.
        List<Point> samples = getPoints( source.getWidth(), source.getHeight() );
        Collections.sort( samples, new Comparator<Point>()
        {

            @Override
            public int compare( Point o1, Point o2 )
            {
                int c1 = getRGB( source, o1.x, o1.y );
                int c2 = getRGB( source, o2.x, o2.y );
                return c1 -c2;
            }
        } );

        // Create a list of colors in the palette.
        List<Integer> colors = getColors( palette );

        while ( !samples.isEmpty() )
        {
            Point currentPoint = samples.remove( 0 );
            int sourceAtPoint = getRGB( source, currentPoint.x, currentPoint.y );
            int colorIndex = binarySearch( colors, sourceAtPoint );
            int bestColor = colors.remove( colorIndex );
            setRGB( result, currentPoint.x, currentPoint.y, bestColor );
        }
        return result;
    }

    public static int unpack( int rgbPacked )
    {
        BitSet packed = Bits.convert( rgbPacked );
        BitSet rgb = Bits.convert( 0 );
        for (int i=0; i<8; i++)
        {
            rgb.set( i,    packed.get( i*3 )  );
            rgb.set( i+16,    packed.get( i*3+1 )  );
            rgb.set( i+8,    packed.get( i*3+2 )  );
        }
        return Bits.convert( rgb);
    }

    public static int pack( int rgb )
    {
        int myrgb = rgb & 0x00FFFFFF;

        BitSet bits = Bits.convert( myrgb );
        BitSet packed = Bits.convert( 0 );

        for (int i=0; i<8; i++)
        {
            packed.set( i*3,    bits.get( i )  );
            packed.set( i*3+1,  bits.get( i+16 )  );
            packed.set( i*3+2,  bits.get( i+8 )  );
        }
        return Bits.convert( packed);

    }

    public static int getRGB( BufferedImage image, int x, int y )
    {
        return pack( image.getRGB( x, y ) );
    }

    public static void setRGB( BufferedImage image, int x, int y, int color )
    {
        image.setRGB( x, y, unpack( color ) );
    }

    public static List<Point> getPoints( int width, int height )
    {
        List<Point> points = new ArrayList<>( width * height );
        for ( int x = 0; x < width; x++ )
        {
            for ( int y = 0; y < height; y++ )
            {
                points.add( new Point( x, y ) );
            }
        }
        return points;
    }

    public static List<Integer> getColors( BufferedImage img )
    {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>( width * height );
        for ( int x = 0; x < width; x++ )
        {
            for ( int y = 0; y < height; y++ )
            {
                colors.add( getRGB( img, x, y ) );
            }
        }
        Collections.sort( colors );
        return colors;
    }

    public static int binarySearch( List<Integer> toSearch, int obj )
    {
        int index = toSearch.size() >> 1;
        for ( int guessChange = toSearch.size() >> 2; guessChange > 0; guessChange >>= 1 )
        {
            int value = toSearch.get( index );
            if ( obj == value )
            {
                return index;
            }
            else if ( obj < value )
            {
                index -= guessChange;
            }
            else
            {
                index += guessChange;
            }
        }
        return index;
    }

    public static File resource( String fileName )
    { // This method is here solely
        // for my ease of use (I put
        // the files under <Project
        // Name>/Resources/ )
        return new File( System.getProperty( "user.home" ) + "/pictureswap/" + fileName );
    }
}

Мона Лиза -> Фермеры

введите описание изображения здесь

Что делает, это сортирует точки, которые должны быть заменены их интенсивностью, а не случайными.


8

Рубин

Обзор:

Действительно простой подход, но, похоже, дает довольно хорошие результаты:

  1. Возьмите палитру и цель, отсортируйте их пиксели по какой-то функции; Назовите их «ссылочные» массивы. Я выбрал сортировку по HSLA, но предпочел яркость, а не насыщенность оттенку (он же «LSHA»).
  2. Создайте выходное изображение, перебирая каждый пиксель целевого изображения, находя, где оно сортируется в целевом эталонном массиве, и извлекая пиксель из палитры, которая была отсортирована по тому же индексу в эталонном массиве палитры.

Код:

require 'rubygems'
require 'chunky_png'
require 'rmagick' # just for the rgba => hsla converter, feel free to use something lighter-weight you have on hand

def pixel_array_for_image(image)
  # [r, b, g, a]
  image.pixels.map{|p| ChunkyPNG::Color.to_truecolor_alpha_bytes(p)}
end

def sorted_pixel_references(pixel_array)
  pixel_array.map{|a| yield(a)}.map.with_index.sort_by(&:first).map(&:last)
end

def sort_by_lsha(pixel_array)
  sorted_pixel_references(pixel_array) {|p|
    # feel free to drop in any sorting function you want here!
    hsla = Magick::Pixel.new(*p).to_hsla # [h, s, l, a]
    [hsla[2], hsla[1], hsla[0], hsla[3]]
  }
end

def make_target_out_of_palette(target_filename, palette_filename, output_filename)
  puts "making #{target_filename} out of #{palette_filename}"

  palette = ChunkyPNG::Image.from_file(palette_filename)
  target = ChunkyPNG::Image.from_file(target_filename)
  puts "  loaded images"

  palette_array = pixel_array_for_image(palette)
  target_array = pixel_array_for_image(target)
  puts "  have pixel arrays"

  palette_spr = sort_by_lsha(palette_array)
  target_spr = sort_by_lsha(target_array)
  puts "  have sorted-pixel reference arrays"

  output = ChunkyPNG::Image.new(target.dimension.width, target.dimension.height, ChunkyPNG::Color::TRANSPARENT)
  (0...target_array.count).each { |index|
    spr_index = target_spr.index(index)
    index_in_palette = palette_spr[spr_index]
    palette_pixel = palette_array[index_in_palette]
    index_as_x = (index % target.dimension.width)
    index_as_y = (index / target.dimension.width)
    output[index_as_x, index_as_y] = ChunkyPNG::Color.rgba(*palette_pixel)
  }
  output.save(output_filename)
  puts "  saved to #{output_filename}"
end

palette_filename, target_filename, output_filename = ARGV
make_target_out_of_palette(target_filename, palette_filename, output_filename)

Результаты:

http://imgur.com/a/Iu7Ds

Особенности:

Звездная ночь из Крик Американская готика из мона лизы Мона Лиза из реки фото Фото реки, сделанное из Звездной ночи


2
Можете ли вы добавить исходные палитры для каждого изображения?
PlasmaHH

7

Perl

Вот довольно упрощенный подход. На моем MacBook Pro требуется около пяти секунд, чтобы создать 100 кадров на пару изображений с объемом памяти около 120 МБ.

Идея состоит в том, чтобы отсортировать пиксели и в изображениях палитры по 24-битному упакованному RGB, и последовательно заменить цвета в источнике цветами из палитры.

#!/usr/bin/env perl

use 5.020; # just because
use strict;
use warnings;

use Const::Fast;
use GD;
GD::Image->trueColor(1);

use Path::Class;

const my $COLOR => 0;
const my $COORDINATES => 1;
const my $RGB => 2;
const my $ANIMATION_FRAMES => 100;

const my %MASK => (
    RED => 0x00ff0000,
    GREEN => 0x0000ff00,
    BLUE => 0x000000ff,
);

run(@ARGV);

sub run {
    unless (@_ == 2) {
        die "Need source and palette images\n";
    }
    my $source_file = file(shift)->resolve;
    my $palette_file = file(shift)->resolve;

    my $source = GD::Image->new("$source_file")
        or die "Failed to create source image from '$source_file'";
    my $palette = GD::Image->new("$palette_file")
        or die "Failed to create palette image from '$palette_file'";

    my %source =  map { $_ => $source->$_ } qw(width height);
    my %palette = map { $_ => $palette->$_ } qw(width height);
    my ($frame_prefix) = ($source_file->basename =~ /\A([^.]+)/);

    unless (
        (my $source_area = $source{width} * $source{height}) <=
        (my $palette_area = $palette{width} * $source{height})
    ) {
        die "Source area ($source_area) is greater than palette area ($palette_area)";
    }

    my ($last_frame, $png) = recreate_source_image_from_palette(
        \%source,
        get_source_pixels( get_pixels_by_color($source, \%source) ),
        get_palette_colors( get_pixels_by_color($palette, \%palette) ),
        sub { save_frame($frame_prefix, @_) }
    );

    save_frame($frame_prefix, $last_frame, $png);
    return;
}

sub save_frame {
    my $frame_prefix = shift;
    my $frame = shift;
    my $png = shift;
    file(
        sprintf("${frame_prefix}-%d.png", $frame)
    )->spew(iomode => '>:raw', $$png);
    return;
}

sub recreate_source_image_from_palette {
    my $dim = shift;
    my $source_pixels = shift;
    my $palette_colors = shift;
    my $callback = shift;
    my $frame = 0;

    my %colors;
    $colors{$_} = undef for @$palette_colors;

    my $gd = GD::Image->new($dim->{width}, $dim->{height}, 1);
    for my $x (keys %colors) {
          $colors{$x} = $gd->colorAllocate(unpack_rgb($x));
    }

    my $period = sprintf '%.0f', @$source_pixels / $ANIMATION_FRAMES;
    for my $i (0 .. $#$source_pixels) {
        $gd->setPixel(
            @{ $source_pixels->[$i] },
            $colors{ $palette_colors->[$i] }
        );
        if ($i % $period == 0) {
            $callback->($frame, \ $gd->png);
            $frame += 1;
        }
    }
    return ($frame, \ $gd->png);
}

sub get_palette_colors { [ map sprintf('%08X', $_->[$COLOR]), @{ $_[0] } ] }

sub get_source_pixels { [ map $_->[$COORDINATES], @{ $_[0] } ] }

sub get_pixels_by_color {
    my $gd = shift;
    my $dim = shift;
    return [
        sort { $a->[$COLOR] <=> $b->[$COLOR] }
        map {
            my $y = $_;
            map {
                [ pack_rgb( $gd->rgb( $gd->getPixel($_, $y) ) ), [$_, $y] ];
            } 0 .. $dim->{width}
        } 0 .. $dim->{height}
    ];
}

sub pack_rgb { $_[0] << 16 | $_[1] << 8 | $_[2] }

sub unpack_rgb {
    my ($r, $g, $b) = map $MASK{$_} & hex($_[0]), qw(RED GREEN BLUE);
    return ($r >> 16, $g >> 8, $b);
}

Выход

Кричать, используя палитру Звездная ночь

Кричать, используя палитру Звездная ночь

Американская готика с использованием цветов Моны Лизы

Американская готика с использованием цветов Моны Лизы

Мона Лиза, используя цвета Scream

Мона Лиза, используя цвета Scream

Река, используя цвета мрамора

Река, используя цвета мрамора

Анимации

Мне было лень, поэтому я разместил анимацию на YouTube: Мона Лиза, используя цвета из «Звездной ночи», и американская готика, используя цвета из Моны Лизы .


7

питон

Я подумал, что воспользуюсь этой небольшой возможностью, чтобы заняться гольф-кодом и использовать его в качестве предлога для работы над моими играми на Python, так как в эти дни он чаще появляется на работе. Я пробежал пару алгоритмов, в том числе несколько с O (n ^ 2) и O (nlog (n)) временем, чтобы попытаться оптимизировать цвета, но стало очень очевидно, что это было и вычислительно дорого, и на самом деле было очень мало влияние на видимый результат. Итак, ниже я рассмотрю вещи, которые работают за O (n) время (в основном, мгновенно в моей системе), которые получают наиболее важный визуальный элемент (яркость) настолько правильно, насколько это разумно, и позволяют цветности попадать туда, где это возможно.

from PIL import Image
def check(palette, copy):
    palette = sorted(palette.getdata())
    copy = sorted(copy.getdata())
    print "Master says it's good!" if copy == palette else "The master disapproves."

def GetLuminance(pixel):
    # Extract the pixel channel data
    b, g, r = pixel
    # and used the standard luminance curve to get luminance.
    return .3*r+.59*g+.11*b

print "Putting pixels on the palette..."
# Open up the image and get all of the pixels out of it. (Memory intensive!)
palette = Image.open("2.png").convert(mode="RGB")

pixelsP = [] # Allocate the array
width,height = palette.size # Unpack the image size
for y in range(height): # Scan the lines
    for x in range(width): # within the line, scan the pixels
        curpixel = palette.getpixel((x,y)) # get the pixel
        pixelsP.append((GetLuminance(curpixel),curpixel)) # and add a (luminance, color) tuple to the array.


# sort the pixels by the calculated luminescence
pixelsP.sort()

print "Getting the reference picture..."
# Open up the image and get all of the pixels out of it. (Memory intensive!)
source = Image.open("6.png").convert(mode="RGB")
pixelsR = [] # Allocate the array
width,height = source.size # Unpack the image size
for y in range(height): # Scan the lines
    for x in range(width): # within the line, scan the pixels
        curpixel = source.getpixel((x,y)) # get the pixel
        pixelsR.append((GetLuminance(curpixel),(x,y))) # and add a (luminance, position) tuple

# Sort the Reference pixels by luminance too
pixelsR.sort()

# Now for the neat observation. Luminance matters more to humans than chromanance,
# given this then we want to match luminance as well as we can. However, we have
# a finite luminance distribution to work with. Since we can't change that, it's best
# just to line the two images up, sorted by luminance, and just simply assign the
# luminance directly. The chrominance will be all kinds of whack, but fixing that
# by way of loose sorting possible chrominance errors takes this algorithm from O(n)
# to O(n^2), which just takes forever (trust me, I've tried it.)

print "Painting reference with palette..."
for p in range(len(pixelsP)): # For each pixel in the palette
    pl,pixel = pixelsP[p] # Grab the pixel from the palette
    l,cord = pixelsR[p] # Grab the location from the reference
    source.putpixel(cord,pixel) # and assign the pallet pixel to the refrence pixels place

print "Applying fixative..."
# save out the result.
source.save("o.png","PNG")

print "Handing it to the master to see if he approves..."
check(palette, source)
print "Done!"

Конечный результат имеет некоторые аккуратные последствия. Однако, если изображения имеют сильно отличающиеся распределения яркости, мало что можно сделать, не продвигаясь и не сглаживая, что может быть интересно в какой-то момент, но здесь для краткости это исключено.

Все -> Мона Лиза

Американская готика -> Мона Лиза Звездная ночь -> Мона Лиза Крик -> Мона Лиза Река -> Мона Лиза Сферы -> Мона Лиза

Мона Лиза -> Сферы

Мона Лиза -> Сферы


6

Mathematica - случайные перестановки

идея

Выберите два пикселя в исходном изображении и проверьте, уменьшится ли ошибка в конечном изображении, если эти два пикселя будут поменяны местами. Мы добавляем небольшое случайное число (-d | + d) к результату, чтобы избежать локальных минимумов. Повторение. Для скорости сделайте это с 10000 пикселей одновременно.

Это немного похоже на марковскую случайную цепочку. Вероятно, было бы хорошо уменьшить случайность в процессе оптимизации, аналогично моделируемому отжигу.

Код

colorSpace = "RGB";
\[Delta] = 0.05;
ClearAll[loadImgur, imgToList, listToImg, improveN, err, rearrange, \
rearrangeImg]
loadImgur[tag_] := 
 RemoveAlphaChannel@
  Import["http://i.stack.imgur.com/" <> tag <> ".png"]
imgToList[img_] := Flatten[ImageData[ColorConvert[img, colorSpace]], 1]
listToImg[u_, w_] := Image[Partition[u, w], ColorSpace -> colorSpace]
err[{x_, y_, z_}] := x^2 + y^2 + z^2
improveN[a_, t_, n_] := Block[{i, j, ai, aj, ti, tj},
  {i, j} = Partition[RandomSample[Range@Length@a, 2 n], n];
  ai = a[[i]];
  aj = a[[j]];
  ti = t[[i]];
  tj = t[[j]];
  ReplacePart[
   a, (#1 -> #3) & @@@ 
    Select[Transpose[{i, 
       err /@ (ai - ti) + err /@ (aj - tj) - err /@ (ai - tj) - 
        err /@ (aj - ti) + RandomReal[\[Delta]^2 {-1, +1}, n], aj}], #[[2]] > 0 &]]
  ]
rearrange[ua_, ub_, iterations_: 100] := Block[{tmp = ua},
  Do[tmp = improveN[tmp, ub, Floor[.1 Length@ua]];, {i, iterations}]; 
  tmp]
rearrangeImg[a_, b_, iterations_: 100] := With[{imgdst = loadImgur[b]},
  listToImg[rearrange[
    RandomSample@imgToList@loadImgur[a],
    imgToList@imgdst, iterations], First@ImageDimensions@imgdst]]
rearrangeImg["JXgho","itzIe"]

Результаты

Готика для Моны Лизы. Слева: используется цветовое пространство LAB (delta = 0). Справа: использование цветового пространства RBG (delta = 0) img7 img8

Готика для Моны Лизы. Слева: цветовое пространство RGB, дельта = 0,05. Справа: цветовое пространство RGB, дельта = 0,15. img9 img10

На следующих изображениях показана анимация для примерно 3 500 000 свопов с цветовым пространством RGB и delta = 0.

img1 img2 img3 img4 img5 img6


Похоже, путь адицу, но я с нетерпением жду ваших результатов.
Лейф

5

обработка

Источник и палитра показаны рядом, и есть анимация пикселей, взятых из палитры;

В строке int i = chooseIndexIncremental();вы можете изменить chooseIndex*функции, чтобы увидеть порядок выбора пикселей.

int scanRate = 20; // pixels per frame

// image filenames
String source = "N6IGO.png";
String palette = "JXgho.png";

PImage src, pal, res;
int area;
int[] lut;
boolean[] processed;
boolean[] taken;
int count = 0;

void start() {
  //size(800, 600);

  src = loadImage(source);
  pal = loadImage(palette);

  size(src.width + pal.width, max(src.height, pal.height));

  src.loadPixels();
  pal.loadPixels();

  int areaSrc = src.pixels.length;
  int areaPal = pal.pixels.length;

  if (areaSrc != areaPal) {
    println("Areas mismatch: src: " + areaSrc + ", pal: " + areaPal);
    return;
  }

  area = areaSrc;

  println("Area: " + area);

  lut = new color[area];
  taken = new boolean[area];
  processed = new boolean[area];

  randomSeed(1);
}

void draw() {
  background(0);
  image(src, 0, 0);
  image(pal, src.width, 0);

  for (int k = 0; k < scanRate; k ++)
  if (count < area) {
    // choose from chooseIndexRandom, chooseIndexSkip and chooseIndexIncremental
    int i = chooseIndexIncremental();
    process(i);

    processed[i] = true;
    count ++;
  }
}

int chooseIndexRandom() {
  int i = 0;
  do i = (int) random(area); while (processed[i]);
  return i;
}

int chooseIndexSkip(int n) {
  int i = (n * count) % area;
  while (processed[i] || i >= area) i = (int) random(area);
  return i;
}

int chooseIndexIncremental() {
  return count;
}

void process(int i) {
  lut[i] = findPixel(src.pixels[i]);
  taken[lut[i]] = true;

  src.loadPixels();
  src.pixels[i] = pal.pixels[lut[i]];
  src.updatePixels();

  pal.loadPixels();
  pal.pixels[lut[i]] = color(0);
  pal.updatePixels();

  stroke(src.pixels[i]);
  int sy = i / src.width;
  int sx = i % src.width;

  int j = lut[i];
  int py = j / pal.width;
  int px = j % pal.width;
  line(sx, sy, src.width + px, py);
}

int findPixel(color c) {
  int best;
  do best = (int) random(area); while (taken[best]);
  float bestDist = colorDist(c, pal.pixels[best]);

  for (int k = 0; k < area; k ++) {
    if (taken[k]) continue;
    color c1 = pal.pixels[k];
    float dist = colorDist(c, c1);
    if (dist < bestDist) {
      bestDist = dist;
      best = k;
    }
  }
  return best;
}

float colorDist(color c1, color c2) {
  return S(red(c1) - red(c2)) + S(green(c1) - green(c2)) + S(blue(c1) - blue(c2));
}

float S(float x) { return x * x; }

Американская готика -> Мона Лиза, пошаговая

дополнительный

Американская готика -> Мона Лиза, случайная

случайный


2
Как это выглядит, если вы используете палитру радужных сфер?
хорошо относитесь к своим модам

5

C-Sharp

Новых / захватывающих идей нет, но я решил попробовать. Просто сортирует пиксели, отдавая приоритет яркости над насыщенностью над оттенком. Код довольно короткий, хотя, за что его стоит.

РЕДАКТИРОВАТЬ: Добавлена ​​еще более короткая версия

using System;
using System.Drawing;
using System.Collections.Generic;

class Program
{
    static void Main(string[] args)
    {
        Bitmap sourceImg = new Bitmap("TheScream.png"),
            arrangImg = new Bitmap("StarryNight.png"),
            destImg = new Bitmap(arrangImg.Width, arrangImg.Height);

        List<Pix> sourcePixels = new List<Pix>(), arrangPixels = new List<Pix>();

        for (int i = 0; i < sourceImg.Width; i++)
            for (int j = 0; j < sourceImg.Height; j++)
                sourcePixels.Add(new Pix(sourceImg.GetPixel(i, j), i, j));

        for (int i = 0; i < arrangImg.Width; i++)
            for (int j = 0; j < arrangImg.Height; j++)
                arrangPixels.Add(new Pix(arrangImg.GetPixel(i, j), i, j));

        sourcePixels.Sort();
        arrangPixels.Sort();

        for (int i = 0; i < arrangPixels.Count; i++)
            destImg.SetPixel(arrangPixels[i].x,
                             arrangPixels[i].y,
                             sourcePixels[i].col);

        destImg.Save("output.png");
    }
}

class Pix : IComparable<Pix>
{
    public Color col;
    public int x, y;
    public Pix(Color col, int x, int y)
    {
        this.col = col;
        this.x = x;
        this.y = y;
    }

    public int CompareTo(Pix other)
    {
        return(int)(255 * 255 * 255 * (col.GetBrightness() - other.col.GetBrightness())
                + (255 * (col.GetHue() - other.col.GetHue()))
                + (255 * 255 * (col.GetSaturation() - other.col.GetSaturation())));
    }
}

Образец:

введите описание изображения здесь

+

введите описание изображения здесь

знак равно

введите описание изображения здесь


5

Ява

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class PixelRearrangerMK2 {

    public static void main(String[] args) throws IOException {
        BufferedImage source = ImageIO.read(resource("Raytraced Spheres.png"));
        BufferedImage palette = ImageIO.read(resource("American Gothic.png"));
        BufferedImage result = rearrange(source, palette);
        ImageIO.write(result, "png", resource("result.png"));
        validate(palette, result);
    }

    public static BufferedImage rearrange(BufferedImage source, BufferedImage palette) {
        List<Color> sColors = Color.getColors(source);
        List<Color> pColors = Color.getColors(palette);
        Collections.sort(sColors);
        Collections.sort(pColors);

        BufferedImage result = new BufferedImage(source.getWidth(), source.getHeight(), BufferedImage.TYPE_INT_RGB);
        Iterator<Color> sIter = sColors.iterator();
        Iterator<Color> pIter = pColors.iterator();

        while (sIter.hasNext()) {
            Color s = sIter.next();
            Color p = pIter.next();

            result.setRGB(s.x, s.y, p.rgb);
        }
        return result;
    }

    public static class Color implements Comparable {
        int x, y;
        int rgb;
        double hue;

        private int r, g, b;

        public Color(int x, int y, int rgb) {
            this.x = x;
            this.y = y;
            this.rgb = rgb;
            r = (rgb & 0xFF0000) >> 16;
            g = (rgb & 0x00FF00) >> 8;
            b = rgb & 0x0000FF;
            hue = Math.atan2(Math.sqrt(3) * (g - b), 2 * r - g - b);
        }

        @Override
        public int compareTo(Object o) {
            Color c = (Color) o;
            return hue < c.hue ? -1 : hue == c.hue ? 0 : 1;
        }

        public static List<Color> getColors(BufferedImage img) {
            List<Color> result = new ArrayList<>();
            for (int y = 0; y < img.getHeight(); y++) {
                for (int x = 0; x < img.getWidth(); x++) {
                    result.add(new Color(x, y, img.getRGB(x, y)));
                }
            }
            return result;
        }
    }

    //Validation and util methods follow
    public static void validate(BufferedImage palette, BufferedImage result) {
        List<Integer> paletteColors = getColorsAsInt(palette);
        List<Integer> resultColors = getColorsAsInt(result);
        Collections.sort(paletteColors);
        Collections.sort(resultColors);
        System.out.println(paletteColors.equals(resultColors));
    }

    public static List<Integer> getColorsAsInt(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(img.getRGB(x, y));
            }
        }
        Collections.sort(colors);
        return colors;
    }

    public static File resource(String fileName) {
        return new File(System.getProperty("user.dir") + "/Resources/" + fileName);
    }
}

Вот совершенно другая идея. Я создаю список цветов каждого изображения, затем сортирую по оттенку, который вычисляется по формуле Википедии:

введите описание изображения здесь

В отличие от моего другого ответа, это очень быстро. Это займет около 2 секунд, включая проверку.

Результатом является некое абстрактное искусство. Вот несколько изображений (при наведении курсора на / из):

введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь


5
Похоже, что Хищник увидит
о_О

Это довольно страшно, но они действительно верны!
Увлечения Кэлвина

1
@ Calvin'sHobbies Как это страшно? Я называю это красотой.
Джастин

3
Их лица пустые и жуткие ... но они действительно преследуют красоту.
Увлечения Кэлвина

1
Сферы потрясающие.
Силед

5

питон

Ну, я решил, что мог бы также опубликовать свое решение, так как я потратил время, чтобы сделать это. По сути, я решил, что я получу необработанные пиксельные данные изображений, отсортирую данные по яркости, а затем перенесу значения того же индекса в новое изображение. Я изменил свое мнение о яркости, и вместо этого использовал яркость. Я получил довольно хорошие результаты с этим.

from PIL import Image
from optparse import OptionParser


def key_func(arr):
    # Sort the pixels by luminance
    r = 0.2126*arr[0] + 0.7152*arr[1] + 0.0722*arr[2]
    return r


def main():
    # Parse options from the command line
    parser = OptionParser()
    parser.add_option("-p", "--pixels", dest="pixels",
                      help="use pixels from FILE", metavar="FILE")
    parser.add_option("-i", "--input", dest="input", metavar="FILE",
                      help="recreate FILE")
    parser.add_option("-o", "--out", dest="output", metavar="FILE",
                      help="output to FILE", default="output.png")

    (options, args) = parser.parse_args()

    if not options.pixels or not options.input:
        raise Exception("Missing arguments. See help for more info.")

    # Load the images
    im1 = Image.open(options.pixels)
    im2 = Image.open(options.input)

    # Get the images into lists
    px1 = list(im1.getdata())
    px2 = list(im2.getdata())
    w1, h1 = im1.size
    w2, h2 = im2.size

    if w1*h1 != w2*h2:
        raise Exception("Images must have the same number of pixels.")

    # Sort the pixels lists by luminance
    px1_s = sorted(px1, key=key_func)
    px2_s = sorted(px2, key=key_func)

    # Create an array of nothing but black pixels
    arr = [(0, 0, 0)]*w2*h2

    # Create a dict that contains a list of locations with pixel value as key
    # This speeds up the process a lot, since before it was O(n^2)
    locations_cache = {}
    for index, val in enumerate(px2):
        v = str(val)
        if v in locations_cache:
            locations_cache[v].append(index)
        else:
            locations_cache[v] = [index]

    # Loop through each value of the sorted pixels
    for index, val in enumerate(px2_s):
        # Find the original location of the pixel
        # v = px2.index(val)
        v = locations_cache[str(val)].pop(0)
        # Set the value of the array at the given location to the pixel of the
        # equivalent luminance from the source image
        arr[v] = px1_s[index]
        # v2 = px1.index(px1_s[index])
        # Set the value of px2 to an arbitrary value outside of the RGB range
        # This prevents duplicate pixel locations
        # I would use "del px2[v]", but it wouldn't work for some reason
        px2[v] = (512, 512, 512)
        # px1[v2] = (512, 512, 512)
        # Print the percent progress
        print("%f%%" % (index/len(px2)*100))
        """if index % 500 == 0 or index == len(px2_s)-1:
            if h1 > h2:
                size = (w1+w2, h1)
            else:
                size = (w1+w2, h2)
            temp_im1 = Image.new("RGB", im2.size)
            temp_im1.putdata(arr)

            temp_im2 = Image.new("RGB", im1.size)
            temp_im2.putdata(px1)

            temp_im3 = Image.new("RGB", size)
            temp_im3.paste(temp_im1, (0, 0))
            temp_im3.paste(temp_im2, (w2, 0))
            temp_im3.save("still_frames/img_%04d.png" % (index/500))"""

    # Save the image
    im3 = Image.new('RGB', im2.size)
    im3.putdata(arr)
    im3.save(options.output)

if __name__ == '__main__':
    main()

Результаты

Я был очень доволен результатами. Казалось, что он работает последовательно для всех изображений, которые я пропустил.

Звездная ночь с кричащими пикселями

Крик + Звездная Ночь

Звездная ночь с радужными пикселями

Радуга + Звездная Ночь

Радуга с пикселями звездной ночи

Звездная ночь + Радуга

Мона Лиза с Криком Пикселей

Крик + Мона Лиза

Река с Пикселями Звездной Ночи

Звездная ночь + река

Мона Лиза с американскими готическими пикселями

Готика + Мона Лиза

Мустанг с Пикселями Шевроле

Вероятно, я должен был уменьшить масштаб изображения, учитывая мои аппаратные ограничения, ну да ладно.

Chevy + Mustang

Шевроле с Пикселями Мустанга

Mustang + Chevy

Река с радужными пикселями

Радуга + River

Мона Лиза с радужными пикселями

Радуга + Мона Лиза

Американская готика с пикселями радуги

Радуга + Gothic


Обновление Я добавил еще несколько картинок, и вот пара анимаций. Первый показывает, как работал мой метод, а второй использует скрипт @ Calvin'sHobbies.

Мой метод

@ Calvin'sHobbies скрипт


Обновление 2 Я добавил диктант, хранящий индексы пикселей по цвету. Это сделало сценарий более эффективным. Чтобы увидеть оригинал, проверьте историю изменений.


5

C ++ 11

В итоге я остановился на относительно простом детерминированном жадном алгоритме. Это однопоточный, но работает на моей машине более 4 секунд.

Основной алгоритм работает, сортируя все пиксели как в палитре, так и в целевом изображении, уменьшая яркость (L L a b * ). Затем для каждого из этих упорядоченных целевых пикселей он ищет наиболее близкое совпадение в первых 75 записях палитры, используя квадрат метрики расстояния CIEDE2000 с яркостью цветов палитры, привязанной к яркости цели. (Для реализации и отладки CIEDE2000 эта страница была очень полезной). Наилучшее совпадение затем удаляется из палитры, присваивается результат, и алгоритм переходит к следующему наиболее светлому пикселю в целевом изображении.

Используя отсортированную яркость как для цели, так и для палитры, мы гарантируем, что общая яркость (наиболее визуально заметный элемент) результата соответствует цели как можно ближе. Использование небольшого окна из 75 записей дает хороший шанс найти подходящий цвет примерно правильной яркости, если он есть. Если его нет, цвет будет отключен, но яркость должна быть постоянной. В результате он довольно изящно ухудшается, когда цвета палитры плохо совпадают.

Код

Для компиляции вам понадобятся библиотеки разработки ImageMagick ++. Небольшой файл CMake для его компиляции также включен ниже.

palette.cpp

#include <Magick++.h>
#include <algorithm>
#include <functional>
#include <utility>
#include <set>

using namespace std;
using namespace Magick;

struct Lab
{
    PixelPacket rgb;
    float L, a, b;

    explicit Lab(
        PixelPacket rgb )
        : rgb( rgb )
    {
        auto R_srgb = static_cast< float >( rgb.red ) / QuantumRange;
        auto G_srgb = static_cast< float >( rgb.green ) / QuantumRange;
        auto B_srgb = static_cast< float >( rgb.blue ) / QuantumRange;
        auto R_lin = R_srgb < 0.04045f ? R_srgb / 12.92f :
            powf( ( R_srgb + 0.055f ) / 1.055f, 2.4f );
        auto G_lin = G_srgb < 0.04045f ? G_srgb / 12.92f :
            powf( ( G_srgb + 0.055f ) / 1.055f, 2.4f );
        auto B_lin = B_srgb < 0.04045f ? B_srgb / 12.92f :
            powf( ( B_srgb + 0.055f ) / 1.055f, 2.4f );
        auto X = 0.4124f * R_lin + 0.3576f * G_lin + 0.1805f * B_lin;
        auto Y = 0.2126f * R_lin + 0.7152f * G_lin + 0.0722f * B_lin;
        auto Z = 0.0193f * R_lin + 0.1192f * G_lin + 0.9502f * B_lin;
        auto X_norm = X / 0.9505f;
        auto Y_norm = Y / 1.0000f;
        auto Z_norm = Z / 1.0890f;
        auto fX = ( X_norm > 216.0f / 24389.0f ?
                    powf( X_norm, 1.0f / 3.0f ) :
                    X_norm * ( 841.0f / 108.0f ) + 4.0f / 29.0f );
        auto fY = ( Y_norm > 216.0f / 24389.0f ?
                    powf( Y_norm, 1.0f / 3.0f ) :
                    Y_norm * ( 841.0f / 108.0f ) + 4.0f / 29.0f );
        auto fZ = ( Z_norm > 216.0f / 24389.0f ?
                    powf( Z_norm, 1.0f / 3.0f ) :
                    Z_norm * ( 841.0f / 108.0f ) + 4.0f / 29.0f );
        L = 116.0f * fY - 16.0f;
        a = 500.0f * ( fX - fY );
        b = 200.0f * ( fY - fZ );
    }

    bool operator<(
        Lab const that ) const
    {
        return ( L > that.L ? true :
                 L < that.L ? false :
                 a > that.a ? true :
                 a < that.a ? false :
                 b > that.b );
    }

    Lab clampL(
        Lab const that ) const
    {
        auto result = Lab( *this );
        if ( result.L > that.L )
            result.L = that.L;
        return result;
    }

    float cieDe2000(
        Lab const that,
        float const k_L = 1.0f,
        float const k_C = 1.0f,
        float const k_H = 1.0f ) const
    {
        auto square = []( float value ){ return value * value; };
        auto degs = []( float rad ){ return rad * 180.0f / 3.14159265359f; };
        auto rads = []( float deg ){ return deg * 3.14159265359f / 180.0f; };
        auto C_1 = hypot( a, b );
        auto C_2 = hypot( that.a, that.b );
        auto C_bar = ( C_1 + C_2 ) * 0.5f;
        auto C_bar_7th = square( square( C_bar ) ) * square( C_bar ) * C_bar;
        auto G = 0.5f * ( 1.0f - sqrtf( C_bar_7th / ( C_bar_7th + 610351562.0f ) ) );
        auto a_1_prime = ( 1.0f + G ) * a;
        auto a_2_prime = ( 1.0f + G ) * that.a;
        auto C_1_prime = hypot( a_1_prime, b );
        auto C_2_prime = hypot( a_2_prime, that.b );
        auto h_1_prime = C_1_prime == 0.0f ? 0.0f : degs( atan2f( b, a_1_prime ) );
        if ( h_1_prime < 0.0f )
            h_1_prime += 360.0f;
        auto h_2_prime = C_2_prime == 0.0f ? 0.0f : degs( atan2f( that.b, a_2_prime ) );
        if ( h_2_prime < 0.0f )
            h_2_prime += 360.0f;
        auto delta_L_prime = that.L - L;
        auto delta_C_prime = C_2_prime - C_1_prime;
        auto delta_h_prime =
            C_1_prime * C_2_prime == 0.0f ? 0 :
            fabs( h_2_prime - h_1_prime ) <= 180.0f ? h_2_prime - h_1_prime :
            h_2_prime - h_1_prime > 180.0f ? h_2_prime - h_1_prime - 360.0f :
            h_2_prime - h_1_prime + 360.0f;
        auto delta_H_prime = 2.0f * sqrtf( C_1_prime * C_2_prime ) *
            sinf( rads( delta_h_prime * 0.5f ) );
        auto L_bar_prime = ( L + that.L ) * 0.5f;
        auto C_bar_prime = ( C_1_prime + C_2_prime ) * 0.5f;
        auto h_bar_prime =
            C_1_prime * C_2_prime == 0.0f ? h_1_prime + h_2_prime :
            fabs( h_1_prime - h_2_prime ) <= 180.0f ? ( h_1_prime + h_2_prime ) * 0.5f :
            h_1_prime + h_2_prime < 360.0f ? ( h_1_prime + h_2_prime + 360.0f ) * 0.5f :
            ( h_1_prime + h_2_prime - 360.0f ) * 0.5f;
        auto T = ( 1.0f
                   - 0.17f * cosf( rads( h_bar_prime - 30.0f ) )
                   + 0.24f * cosf( rads( 2.0f * h_bar_prime ) )
                   + 0.32f * cosf( rads( 3.0f * h_bar_prime + 6.0f ) )
                   - 0.20f * cosf( rads( 4.0f * h_bar_prime - 63.0f ) ) );
        auto delta_theta = 30.0f * expf( -square( ( h_bar_prime - 275.0f ) / 25.0f ) );
        auto C_bar_prime_7th = square( square( C_bar_prime ) ) *
            square( C_bar_prime ) * C_bar_prime;
        auto R_C = 2.0f * sqrtf( C_bar_prime_7th / ( C_bar_prime_7th + 610351562.0f ) );
        auto S_L = 1.0f + ( 0.015f * square( L_bar_prime - 50.0f ) /
                            sqrtf( 20.0f + square( L_bar_prime - 50.0f ) ) );
        auto S_C = 1.0f + 0.045f * C_bar_prime;
        auto S_H = 1.0f + 0.015f * C_bar_prime * T;
        auto R_T = -sinf( rads( 2.0f * delta_theta ) ) * R_C;
        return (
            square( delta_L_prime / ( k_L * S_L ) ) +
            square( delta_C_prime / ( k_C * S_C ) ) +
            square( delta_H_prime / ( k_H * S_H ) ) +
            R_T * delta_C_prime * delta_H_prime / ( k_C * S_C * k_H * S_H ) );
    }

};

Image read_image(
    char * const filename )
{
    auto result = Image( filename );
    result.type( TrueColorType );
    result.matte( true );
    result.backgroundColor( Color( 0, 0, 0, QuantumRange ) );
    return result;
}

template< typename T >
multiset< T > map_image(
    Image const &image,
    function< T( unsigned, PixelPacket ) > const transform )
{
    auto width = image.size().width();
    auto height = image.size().height();
    auto result = multiset< T >();
    auto pixels = image.getConstPixels( 0, 0, width, height );
    for ( auto index = 0; index < width * height; ++index, ++pixels )
        result.emplace( transform( index, *pixels ) );
    return result;
}

int main(
    int argc,
    char **argv )
{
    auto palette = map_image(
        read_image( argv[ 1 ] ),
        function< Lab( unsigned, PixelPacket ) >(
            []( unsigned index, PixelPacket rgb ) {
                return Lab( rgb );
            } ) );

    auto target_image = read_image( argv[ 2 ] );
    auto target_colors = map_image(
        target_image,
        function< pair< Lab, unsigned >( unsigned, PixelPacket ) >(
            []( unsigned index, PixelPacket rgb ) {
                return make_pair( Lab( rgb ), index );
            } ) );

    auto pixels = target_image.setPixels(
        0, 0,
        target_image.size().width(),
        target_image.size().height() );
    for ( auto &&target : target_colors )
    {
        auto best_color = palette.begin();
        auto best_difference = 1.0e38f;
        auto count = 0;
        for ( auto candidate = palette.begin();
              candidate != palette.end() && count < 75;
              ++candidate, ++count )
        {
            auto difference = target.first.cieDe2000(
                candidate->clampL( target.first ) );
            if ( difference < best_difference )
            {
                best_color = candidate;
                best_difference = difference;
            }
        }
        pixels[ target.second ] = best_color->rgb;
        palette.erase( best_color );
    }
    target_image.syncPixels();
    target_image.write( argv[ 3 ] );

    return 0;
}

CMakeList.txt

cmake_minimum_required( VERSION 2.8.11 )
project( palette )
add_executable( palette palette.cpp)
find_package( ImageMagick COMPONENTS Magick++ )
if( ImageMagick_FOUND )
    include_directories( ${ImageMagick_INCLUDE_DIRS} )
    target_link_libraries( palette ${ImageMagick_LIBRARIES} )
endif( ImageMagick_FOUND )

Результат

Полный альбом здесь. Из приведенных ниже результатов моими фаворитами, вероятно, являются «Американская готика» с палитрой «Мона Лиза» и «Звездная ночь» с палитрой «Сферы».

Американская готическая палитра

Мона Лиза Палитра

Речная палитра

Палитра Криков

Палитра сфер

Звездная ночь палитра


Это выглядит фантастически! Что вы думаете о том, насколько это может быть ускорено? Есть ли шанс в реальном времени, то есть 60fps в среднем на аппаратном обеспечении?
Данияр

4

C ++

Не самый короткий код, но генерирует ответ «мгновенно», несмотря на то, что он однопоточный и неоптимизированный. Я доволен результатами.

Я генерирую два отсортированных списка пикселей, по одному для каждого изображения, и сортировка основана на взвешенном значении «яркости». Я использую 100% зеленый, 50% красный и 10% синий, чтобы вычислить яркость, взвешивая ее для человеческого глаза (более или менее). Затем я заменяю пиксели в исходном изображении тем же индексированным пикселем в изображении палитры и выписываю конечное изображение.

Я использую библиотеку FreeImage для чтения / записи файлов изображений.

Код

/* Inputs: 2 image files of same area
Outputs: image1 made from pixels of image2*/
#include <iostream>
#include <stdlib.h>
#include "FreeImage.h"
#include <vector>
#include <algorithm>

class pixel
{
public:
    int x, y;
    BYTE r, g, b;
    float val;  //color value; weighted 'brightness'
};

bool sortByColorVal(const pixel &lhs, const pixel &rhs) { return lhs.val > rhs.val; }

FIBITMAP* GenericLoader(const char* lpszPathName, int flag) 
{
    FREE_IMAGE_FORMAT fif = FIF_UNKNOWN;

    // check the file signature and deduce its format
    // (the second argument is currently not used by FreeImage)
    fif = FreeImage_GetFileType(lpszPathName, 0);
    if (fif == FIF_UNKNOWN) 
    {
        // no signature ?
        // try to guess the file format from the file extension
        fif = FreeImage_GetFIFFromFilename(lpszPathName);
    }
    // check that the plugin has reading capabilities ...
    if ((fif != FIF_UNKNOWN) && FreeImage_FIFSupportsReading(fif)) 
    {
        // ok, let's load the file
        FIBITMAP *dib = FreeImage_Load(fif, lpszPathName, flag);
        // unless a bad file format, we are done !
        return dib;
    }
    return NULL;
}

bool GenericWriter(FIBITMAP* dib, const char* lpszPathName, int flag) 
{
    FREE_IMAGE_FORMAT fif = FIF_UNKNOWN;
    BOOL bSuccess = FALSE;

    if (dib) 
    {
        // try to guess the file format from the file extension
        fif = FreeImage_GetFIFFromFilename(lpszPathName);
        if (fif != FIF_UNKNOWN) 
        {
            // check that the plugin has sufficient writing and export capabilities ...
            WORD bpp = FreeImage_GetBPP(dib);
            if (FreeImage_FIFSupportsWriting(fif) && FreeImage_FIFSupportsExportBPP(fif, bpp)) 
            {
                // ok, we can save the file
                bSuccess = FreeImage_Save(fif, dib, lpszPathName, flag);
                // unless an abnormal bug, we are done !
            }
        }
    }
    return (bSuccess == TRUE) ? true : false;
}

void FreeImageErrorHandler(FREE_IMAGE_FORMAT fif, const char *message) 
{
    std::cout << std::endl << "*** ";
    if (fif != FIF_UNKNOWN) 
    {
        std::cout << "ERROR: " << FreeImage_GetFormatFromFIF(fif) << " Format" << std::endl;
    }
    std::cout << message;
    std::cout << " ***" << std::endl;
}

FIBITMAP* Convert24BPP(FIBITMAP* dib)
{
    if (FreeImage_GetBPP(dib) == 24) return dib;

    FIBITMAP *dib2 = FreeImage_ConvertTo24Bits(dib);
    FreeImage_Unload(dib);
    return dib2;
}
// ----------------------------------------------------------

int main(int argc, char **argv)
{
    // call this ONLY when linking with FreeImage as a static library
#ifdef FREEIMAGE_LIB
    FreeImage_Initialise();
#endif

    FIBITMAP *src = NULL, *pal = NULL;
    int result = EXIT_FAILURE;

    // initialize my own FreeImage error handler
    FreeImage_SetOutputMessage(FreeImageErrorHandler);

    // print version
    std::cout << "FreeImage version : " << FreeImage_GetVersion() << std::endl;

    if (argc != 4) 
    {
        std::cout << "USAGE : Pic2Pic <source image> <palette image> <output file name>" << std::endl;
        return EXIT_FAILURE;
    }

    // Load the src image
    src = GenericLoader(argv[1], 0);
    if (src) 
    {
        // load the palette image
        pal = GenericLoader(argv[2], 0);

        if (pal) 
        {
            //compare areas
            // if(!samearea) return EXIT_FAILURE;
            unsigned int width_src = FreeImage_GetWidth(src);
            unsigned int height_src = FreeImage_GetHeight(src);
            unsigned int width_pal = FreeImage_GetWidth(pal);
            unsigned int height_pal = FreeImage_GetHeight(pal);

            if (width_src * height_src != width_pal * height_pal)
            {
                std::cout << "ERROR: source and palette images do not have the same pixel area." << std::endl;
                result = EXIT_FAILURE;
            }
            else
            {
                //go to work!

                //first make sure everything is 24 bit:
                src = Convert24BPP(src);
                pal = Convert24BPP(pal);

                //retrieve the image data
                BYTE *bits_src = FreeImage_GetBits(src);
                BYTE *bits_pal = FreeImage_GetBits(pal);

                //make destination image
                FIBITMAP *dst = FreeImage_ConvertTo24Bits(src);
                BYTE *bits_dst = FreeImage_GetBits(dst);

                //make a vector of all the src pixels that we can sort by color value
                std::vector<pixel> src_pixels;
                for (unsigned int y = 0; y < height_src; ++y)
                {
                    for (unsigned int x = 0; x < width_src; ++x)
                    {
                        pixel p;
                        p.x = x;
                        p.y = y;

                        p.b = bits_src[y*width_src * 3 + x * 3];
                        p.g = bits_src[y*width_src * 3 + x * 3 + 1];
                        p.r = bits_src[y*width_src * 3 + x * 3 + 2];

                        //calculate color value using a weighted brightness for each channel
                        //p.val = 0.2126f * p.r + 0.7152f * p.g + 0.0722f * p.b; //from http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html
                        p.val = 0.5f * p.r + p.g + 0.1f * p.b;                      

                        src_pixels.push_back(p);
                    }
                }

                //sort by color value
                std::sort(src_pixels.begin(), src_pixels.end(), sortByColorVal);

                //make a vector of all palette pixels we can use
                std::vector<pixel> pal_pixels;

                for (unsigned int y = 0; y < height_pal; ++y)
                {
                    for (unsigned int x = 0; x < width_pal; ++x)
                    {
                        pixel p;

                        p.b = bits_pal[y*width_pal * 3 + x * 3];
                        p.g = bits_pal[y*width_pal * 3 + x * 3 + 1];
                        p.r = bits_pal[y*width_pal * 3 + x * 3 + 2];

                        p.val = 0.5f * p.r + p.g + 0.1f * p.b;

                        pal_pixels.push_back(p);
                    }
                }

                //sort by color value
                std::sort(pal_pixels.begin(), pal_pixels.end(), sortByColorVal);

                //for each src pixel, match it with same index palette pixel and copy to destination
                for (unsigned int i = 0; i < width_src * height_src; ++i)
                {
                    bits_dst[src_pixels[i].y * width_src * 3 + src_pixels[i].x * 3] = pal_pixels[i].b;
                    bits_dst[src_pixels[i].y * width_src * 3 + src_pixels[i].x * 3 + 1] = pal_pixels[i].g;
                    bits_dst[src_pixels[i].y * width_src * 3 + src_pixels[i].x * 3 + 2] = pal_pixels[i].r;
                }

                // Save the destination image
                bool bSuccess = GenericWriter(dst, argv[3], 0);
                if (!bSuccess)
                {
                    std::cout << "ERROR: unable to save " << argv[3] << std::endl;
                    std::cout << "This format does not support 24-bit images" << std::endl;
                    result = EXIT_FAILURE;
                }
                else result = EXIT_SUCCESS;

                FreeImage_Unload(dst);
            }

            // Free pal
            FreeImage_Unload(pal);
        }

        // Free src
        FreeImage_Unload(src);
    }

#ifdef FREEIMAGE_LIB
    FreeImage_DeInitialise();
#endif

    if (result == EXIT_SUCCESS) std::cout << "SUCCESS!" << std::endl;
    else std::cout << "FAILURE!" << std::endl;
    return result;
}

Результаты

Американская готика с использованием палитры Моны Лизы Американская готика с использованием палитры Мона Лиза Американская готика с использованием палитры Rainbow Американская готика с использованием палитры Радуга Мона Лиза с помощью палитры Scream Мона Лиза с использованием палитры Крик Мона Лиза с использованием палитры Радуга Мона Лиза с использованием палитры Радуга Кричать, используя палитру Звездная ночь Крик с использованием палитры Звездная ночь


4

C #

Очки упорядочены в случайном порядке, начиная с центра. всегда получайте самый близкий цвет в изображении палитры. Так что последние пиксели несколько очень плохие.

Результаты

Готическая палитра

введите описание изображения здесь

введите описание изображения здесь

И американская пара посетителей из Википедии

введите описание изображения здесь

Палитра мона

введите описание изображения здесь

введите описание изображения здесь

введите описание изображения здесь

Код:

Я не знаю почему, но код довольно медленный ...

public class PixelExchanger
{
    public class ProgressInfo
    {
        public readonly Pixel NewPixel;
        public readonly int Percentage;

        public ProgressInfo(Pixel newPixel, int percentage)
        {
            this.NewPixel = newPixel;
            this.Percentage = percentage;
        }
    }

    public class Pixel
    {
        public readonly int X;
        public readonly int Y;
        public readonly Color Color;

        public Pixel(int x, int y, Color color)
        {
            this.X = x;
            this.Y = y;
            this.Color = color;
        }
    }

    private static Random r = new Random(0);

    private readonly Bitmap Pallete;
    private readonly Bitmap Image;

    private readonly int Width;
    private readonly int Height;

    private readonly Action<ProgressInfo> ProgressCallback;
    private System.Drawing.Image image1;
    private System.Drawing.Image image2;

    private int Area { get { return Width * Height; } }

    public PixelExchanger(Bitmap pallete, Bitmap image, Action<ProgressInfo> progressCallback = null)
    {
        this.Pallete = pallete;
        this.Image = image;

        this.ProgressCallback = progressCallback;

        Width = image.Width;
        Height = image.Height;

        if (Area != pallete.Width * pallete.Height)
            throw new ArgumentException("Image and Pallete have different areas!");
    }

    public Bitmap DoWork()
    {
        var array = GetColorArray();
        var map = GetColorMap(Image);
        var newMap = Go(array, map);

        var bm = new Bitmap(map.Length, map[0].Length);

        for (int i = 0; i < Width; i++)
        {
            for (int j = 0; j < Height; j++)
            {
                bm.SetPixel(i, j, newMap[i][j]);
            }
        }

        return bm;
    }

    public Color[][] Go(List<Color> array, Color[][] map)
    {
        var centralPoint = new Point(Width / 2, Height / 2);

        var q = OrderRandomWalking(centralPoint).ToArray();

        Color[][] newMap = new Color[map.Length][];
        for (int i = 0; i < map.Length; i++)
        {
            newMap[i] = new Color[map[i].Length];
        }

        double pointsDone = 0;

        foreach (var p in q)
        {
            newMap[p.X][p.Y] = Closest(array, map[p.X][p.Y]);

            pointsDone++;

            if (ProgressCallback != null)
            {
                var percent = 100 * (pointsDone / (double)Area);

                var progressInfo = new ProgressInfo(new Pixel(p.X, p.Y, newMap[p.X][p.Y]), (int)percent);

                ProgressCallback(progressInfo);
            }
        }

        return newMap;
    }

    private int[][] GetCardinals()
    {
        int[] nn = new int[] { -1, +0 };
        // int[] ne = new int[] { -1, +1 };
        int[] ee = new int[] { +0, +1 };
        // int[] se = new int[] { +1, +1 };
        int[] ss = new int[] { +1, +0 };
        // int[] sw = new int[] { +1, -1 };
        int[] ww = new int[] { +0, -1 };
        // int[] nw = new int[] { -1, -1 };

        var dirs = new List<int[]>();

        dirs.Add(nn);
        // dirs.Add(ne);
        dirs.Add(ee);
        // dirs.Add(se);
        dirs.Add(ss);
        // dirs.Add(sw);
        dirs.Add(ww);
        // dirs.Add(nw);

        return dirs.ToArray();
    }

    private Color Closest(List<Color> array, Color c)
    {
        int closestIndex = -1;

        int bestD = int.MaxValue;

        int[] ds = new int[array.Count];
        Parallel.For(0, array.Count, (i, state) =>
        {
            ds[i] = Distance(array[i], c);

            if (ds[i] <= 50)
            {
                closestIndex = i;
                state.Break();
            }
            else if (bestD > ds[i])
            {
                bestD = ds[i];
                closestIndex = i;
            }
        });

        var closestColor = array[closestIndex];

        array.RemoveAt(closestIndex);

        return closestColor;
    }

    private int Distance(Color c1, Color c2)
    {
        var r = Math.Abs(c1.R - c2.R);
        var g = Math.Abs(c1.G - c2.G);
        var b = Math.Abs(c1.B - c2.B);
        var s = Math.Abs(c1.GetSaturation() - c1.GetSaturation());

        return (int)s + r + g + b;
    }

    private HashSet<Point> OrderRandomWalking(Point p)
    {
        var points = new HashSet<Point>();

        var dirs = GetCardinals();
        var dir = new int[] { 0, 0 };

        while (points.Count < Width * Height)
        {
            bool inWidthBound = p.X + dir[0] < Width && p.X + dir[0] >= 0;
            bool inHeightBound = p.Y + dir[1] < Height && p.Y + dir[1] >= 0;

            if (inWidthBound && inHeightBound)
            {
                p.X += dir[0];
                p.Y += dir[1];

                points.Add(p);
            }

            dir = dirs.Random(r);
        }

        return points;
    }

    private static Color[][] GetColorMap(Bitmap b1)
    {
        int hight = b1.Height;
        int width = b1.Width;

        Color[][] colorMatrix = new Color[width][];
        for (int i = 0; i < width; i++)
        {
            colorMatrix[i] = new Color[hight];
            for (int j = 0; j < hight; j++)
            {
                colorMatrix[i][j] = b1.GetPixel(i, j);
            }
        }
        return colorMatrix;
    }

    private List<Color> GetColorArray()
    {
        var map = GetColorMap(Pallete);

        List<Color> colors = new List<Color>();

        foreach (var line in map)
        {
            colors.AddRange(line);
        }

        return colors;
    }
}

2
Это довольно здорово. Они похожи на фотографии, которые были сожжены или оставлены где-то гнить.

Спасибо, А сделал несколько алгоритмов, но другие были очень похожи на другие ответы. Поэтому я выложил более характерный
RMalke

3

C #

Сравнивает цвета по тому, как далеко они находятся. Начинается с центра.

РЕДАКТИРОВАТЬ: Обновлено, теперь должно быть примерно в 1,5 раза быстрее.

Американская готика
введите описание изображения здесь
. Крик
введите описание изображения здесь
Звездная ночь.
введите описание изображения здесь
Мраморная
введите описание изображения здесь
река.
введите описание изображения здесь
Вот еще и желтый шеви:
введите описание изображения здесь

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ConsoleApplication1
{
    class Pixel
    {
        public int X = 0;
        public int Y = 0;
        public Color Color = new Color();
        public Pixel(int x, int y, Color clr)
        {
            Color = clr;
            X = x;
            Y = y;
        }
        public Pixel()
        {
        }
    }
    class Vector2
    {
        public int X = 0;
        public int Y = 0;
        public Vector2(int x, int y)
        {
            X = x;
            Y = y;
        }
        public Vector2()
        {
        }
        public double Diagonal()
        {
            return Math.Sqrt((X * X) + (Y * Y));
        }
    }
    class ColorCollection
    {
        Dictionary<Color, int> dict = new Dictionary<Color, int>();
        public ColorCollection()
        {
        }
        public void AddColor(Color color)
        {
            if (dict.ContainsKey(color))
            {
                dict[color]++;
                return;
            }
            dict.Add(color, 1);
        }
        public void UseColor(Color color)
        {
            if (dict.ContainsKey(color))
                dict[color]--;
            if (dict[color] < 1)
                dict.Remove(color);
        }
        public Color FindBestColor(Color color)
        {
            Color ret = dict.First().Key;
            int p = this.CalculateDifference(ret, color);
            foreach (KeyValuePair<Color, int> pair in dict)
            {
                int points = CalculateDifference(pair.Key, color);
                if (points < p)
                {
                    ret = pair.Key;
                    p = points;
                }
            }
            this.UseColor(ret);
            return ret;
        }
        int CalculateDifference(Color c1, Color c2)
        {
            int ret = 0;
            ret = ret + Math.Abs(c1.R - c2.R);
            ret = ret + Math.Abs(c1.G - c2.G);
            ret = ret + Math.Abs(c1.B - c2.B);
            return ret;
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            string img1 = "";
            string img2 = "";
            if (args.Length != 2)
            {
                Console.Write("Where is the first picture located? ");
                img1 = Console.ReadLine();
                Console.Write("Where is the second picture located? ");
                img2 = Console.ReadLine();
            }
            else
            {
                img1 = args[0];
                img2 = args[1];
            }
            Bitmap bmp1 = new Bitmap(img1);
            Bitmap bmp2 = new Bitmap(img2);
            Console.WriteLine("Getting colors....");
            ColorCollection colors = GetColors(bmp1);
            Console.WriteLine("Getting pixels....");
            List<Pixel> pixels = GetPixels(bmp2);
            int centerX = bmp2.Width / 2;
            int centerY = bmp2.Height / 2;
            pixels.Sort((p1, p2) =>
            {
                Vector2 p1_v = new Vector2(Math.Abs(p1.X - centerX), Math.Abs(p1.Y - centerY));
                Vector2 p2_v = new Vector2(Math.Abs(p2.X - centerX), Math.Abs(p2.Y - centerY));
                double d1 = p1_v.Diagonal();
                double d2 = p2_v.Diagonal();
                if (d1 > d2)
                    return 1;
                else if (d1 == d2)
                    return 0;
                return -1;
            });
            Console.WriteLine("Calculating...");
            int k = 0;
            Stopwatch sw = Stopwatch.StartNew();
            for (int i = 0; i < pixels.Count; i++)
            {
                if (i % 100 == 0 && i != 0)
                {
                    float percentage = ((float)i / (float)pixels.Count) * 100;
                    Console.WriteLine(percentage.ToString("0.00") + "% completed(" + i + "/" + pixels.Count + ")");
                    Console.SetCursorPosition(0, Console.CursorTop - 1);
                }
                Color set = colors.FindBestColor(pixels[i].Color);
                pixels[i].Color = set;
                k++;
            }
            sw.Stop();
            Console.WriteLine("Saving...");
            Bitmap result = WritePixelsToBitmap(pixels, bmp2.Width, bmp2.Height);
            result.Save(img1 + ".png");
            Console.WriteLine("Completed in " + sw.Elapsed.TotalSeconds + " seconds. Press a key to exit.");
            Console.ReadKey();
        }
        static Bitmap WritePixelsToBitmap(List<Pixel> pixels, int width, int height)
        {
            Bitmap bmp = new Bitmap(width, height);
            foreach (Pixel pixel in pixels)
            {
                bmp.SetPixel(pixel.X, pixel.Y, pixel.Color);
            }
            return bmp;
        }

        static ColorCollection GetColors(Bitmap bmp)
        {
            ColorCollection ret = new ColorCollection();
            for (int x = 0; x < bmp.Width; x++)
            {
                for (int y = 0; y < bmp.Height; y++)
                {
                    Color clr = bmp.GetPixel(x, y);
                    ret.AddColor(clr);
                }
            }
            return ret;
        }
        static List<Pixel> GetPixels(Bitmap bmp)
        {
            List<Pixel> ret = new List<Pixel>();
            for (int x = 0; x < bmp.Width; x++)
            {
                for (int y = 0; y < bmp.Height; y++)
                {
                    Color clr = bmp.GetPixel(x, y);
                    ret.Add(new Pixel(x, y, clr));
                }
            }
            return ret;
        }
    }
}

3

Я решил попробовать использовать очень похожий алгоритм в качестве другого моего ответа, но менял только 2x2 блока пикселей вместо отдельных пикселей. К сожалению, этот алгоритм добавляет дополнительное ограничение, требующее деления размеров изображения на 2, что делает сферы с трассировкой лучей непригодными, если я не изменю размеры.

Мне очень нравятся некоторые результаты!

Американская готика с речной палитрой:

введите описание изображения здесь

Мона Лиза с американской готической палитрой:

введите описание изображения здесь

Мона Лиза с речной палитрой:

введите описание изображения здесь

Я тоже попробовал 4х4, и вот мои любимые!

Звездная ночь с палитрой Крик:

введите описание изображения здесь

Мона Лиза с американской готической палитрой:

введите описание изображения здесь

Крик с палитрой Моны Лизы:

введите описание изображения здесь

Американская готика с палитрой Моны Лизы:

введите описание изображения здесь


1
Думал сделать то же самое + рассчитать вес пикселей на основе квадратных блоков. Мне очень нравятся результаты Моны Лизы - они напоминают мне изображение из образа. Можете ли вы случайно сделать блоки 4х4?
eithed

1
@eithedog Я попробовал 4x4, и это выглядит довольно хорошо. Смотрите мой обновленный ответ!
LVBen

3

C #

Это действительно очень медленно, но отлично справляется, особенно при использовании палитры лучей с трассировкой лучей.

введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь

Палитра Крик:

введите описание изображения здесь введите описание изображения здесь

Палитра Моны Лизы:

введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь

Американская готическая палитра:

введите описание изображения здесь введите описание изображения здесь

Речная палитра:

введите описание изображения здесь введите описание изображения здесь введите описание изображения здесь

Палитра Звездная ночь:

введите описание изображения здесь введите описание изображения здесь

   class Program
   {
      class Pixel
      {
         public int x;
         public int y;
         public Color color;
         public Pixel(int x, int y, Color color)
         {
            this.x = x;
            this.y = y;
            this.color = color;
         }
      }

      static Pixel BaselineColor = new Pixel(0, 0, Color.FromArgb(0, 0, 0, 0));

      static void Main(string[] args)
      {
         string sourceDirectory = "pic" + args[0] + ".png";
         string paletteDirectory = "pic" + args[1] + ".png";

         using (Bitmap source = Bitmap.FromFile(sourceDirectory) as Bitmap)
         {
            List<Pixel> sourcePixels = GetPixels(source).ToList();
            LinkedList<Pixel> palettePixels;

            using (Bitmap palette = Bitmap.FromFile(paletteDirectory) as Bitmap)
            {
               palettePixels = GetPixels(palette) as LinkedList<Pixel>;
            }

            if (palettePixels.Count != sourcePixels.Count)
            {
               throw new Exception("OH NO!!!!!!!!");
            }

            sourcePixels.Sort((x, y) => GetDiff(y, BaselineColor) - GetDiff(x, BaselineColor));

            LinkedList<Pixel> newPixels = new LinkedList<Pixel>();
            foreach (Pixel p in sourcePixels)
            {
               Pixel newPixel = GetClosestColor(palettePixels, p);
               newPixels.AddLast(newPixel);
            }

            foreach (var p in newPixels)
            {
               source.SetPixel(p.x, p.y, p.color);
            }
            source.Save("Out" + args[0] + "to" + args[1] + ".png");
         }
      }

      private static IEnumerable<Pixel> GetPixels(Bitmap source)
      {
         List<Pixel> newList = new List<Pixel>();
         for (int x = 0; x < source.Width; x++)
         {
            for (int y = 0; y < source.Height; y++)
            {
               newList.Add(new Pixel(x, y, source.GetPixel(x, y)));
            }
         }
         return newList;
      }

      private static Pixel GetClosestColor(LinkedList<Pixel> palettePixels, Pixel p)
      {
         Pixel minPixel = palettePixels.First();
         int diff = GetDiff(minPixel, p);
         foreach (var pix in palettePixels)
         {
            int current = GetDiff(pix, p);
            if (current < diff)
            {
               diff = current;
               minPixel = pix;
               if (diff == 0)
               {
                  return minPixel;
               }
            }
         }
         palettePixels.Remove(minPixel);
         return new Pixel(p.x, p.y, minPixel.color);
      }

      private static int GetDiff(Pixel a, Pixel p)
      {
         return GetProx(a.color, p.color);
      }

      private static int GetProx(Color a, Color p)
      {
         int red = (a.R - p.R) * (a.R - p.R);
         int green = (a.G - p.G) * (a.G - p.G);
         int blue = (a.B - p.B) * (a.B - p.B);
         return red + blue + green;
      }
   }

3

Java - еще один картографический подход

Редактировать 1: После того, как это было распространено в «математической» среде на G +, мы все, кажется, используем подходы с различными способами, чтобы обойти сложность.

Изменить 2: я испортил изображения на моем диске Google и перезапустил, поэтому старые ссылки больше не работают. Извините, я все еще работаю над созданием репутации для большего количества ссылок.

Редактировать 3: Читая другие посты, я получил некоторые вдохновения. Теперь я получил программу быстрее и реинвестировал некоторое время процессора, чтобы внести некоторые изменения в зависимости от расположения целевого образа.

Изменить 4: Новая версия программы. Быстрее! Специальная обработка обеих областей с острыми углами и очень плавными изменениями (очень помогает при трассировке лучей, но иногда дает Моне Лизе красные глаза)! Возможность генерировать промежуточные кадры из анимации!

Мне очень понравилась идея, и решение Quincunx заинтриговало меня. Поэтому я подумал, что смогу добавить свои 2 евроцента.

Идея заключалась в том, что нам, очевидно, необходимо (как-то близкое) сопоставление двух цветовых палитр.

С этой идеей я провел первую ночь, пытаясь настроить алгоритм стабильного брака, чтобы он работал быстро и с памятью моего компьютера на 123520 кандидатов. Пока я попал в область памяти, я обнаружил, что проблема времени выполнения неразрешима.

Вторую ночь я решил пойти еще дальше и погрузиться в венгерский алгоритм, который обещал обеспечить даже свойства аппроксимации, то есть минимальное расстояние между цветами в любом изображении. К счастью, я нашел 3 готовых к реализации Java-реализации этого (не считая многих полу-законченных студенческих заданий, которые начинают усложнять поиск элементарных алгоритмов в Google). Но, как можно было ожидать, венгерские алгоритмы еще хуже с точки зрения времени работы и использования памяти. Хуже того, все 3 реализации, которые я тестировал, иногда возвращали неверные результаты. Я дрожу, когда думаю о других программах, которые могут основываться на них.

Третий подход (конец второй ночи) был легким, быстрым, быстрым и, в конце концов, не таким уж и плохим: сортировка цветов на обоих изображениях по яркости и простой карте по ранжированию, т.е. от самого темного к самому темному, от второго темного к второму темному. Это сразу создает четкую черно-белую реконструкцию с разбрызгиванием случайного цвета.

* Подход 4 и последний к настоящему моменту (утро второй ночи) начинается с приведенного выше отображения яркости и добавляет к нему локальные поправки, применяя венгерские алгоритмы к различным перекрывающимся последовательностям пикселей. Таким образом, я получил лучшее отображение и работал над сложностью проблемы и ошибками в реализациях.

Итак, вот некоторый Java-код, некоторые части могут выглядеть аналогично другому Java-коду, опубликованному здесь. Используемый венгерский язык является исправленной версией Джона Миллерса, первоначально в проекте ontologyS Similariy. Это был самый быстрый способ, который я нашел и показал наименьшее количество ошибок.

import java.awt.image.BufferedImage;
import java.io.File;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Set;
import java.util.HashSet;
import java.util.Map;
import java.util.HashMap;
import java.util.List;
import javax.imageio.ImageIO;

/**
 *
 */
public class PixelRearranger {

    private final String mode;

    public PixelRearranger(String mode)
    {
        this.mode = mode;
    }

    public final static class Pixel {
        final BufferedImage img;
        final int val;
        final int r, g, b;
        final int x, y;

        public Pixel(BufferedImage img, int x, int y) {
            this.x = x;
            this.y = y;
            this.img = img;
            if ( img != null ) {
                val = img.getRGB(x,y);
                r = ((val & 0xFF0000) >> 16);
                g = ((val & 0x00FF00) >> 8);
                b = ((val & 0x0000FF));
            } else {
                val = r = g = b = 0;
            }
        }

        @Override
        public int hashCode() {
            return x + img.getWidth() * y + img.hashCode();
        }

        @Override
        public boolean equals(Object o) {
            if ( !(o instanceof Pixel) ) return false;
            Pixel p2 = (Pixel) o;
            return p2.x == x && p2.y == y && p2.img == img;
        }

        public double cd() {
            double x0 = 0.5 * (img.getWidth()-1);
            double y0 = 0.5 * (img.getHeight()-1);
            return Math.sqrt(Math.sqrt((x-x0)*(x-x0)/x0 + (y-y0)*(y-y0)/y0));
        }

        @Override
        public String toString() { return "P["+r+","+g+","+b+";"+x+":"+y+";"+img.getWidth()+":"+img.getHeight()+"]"; }
    }

    public final static class Pair
        implements Comparable<Pair>
    {   
        public Pixel palette, from;
        public double d;

        public Pair(Pixel palette, Pixel from)
        {
            this.palette = palette;
            this.from = from;
            this.d = distance(palette, from);
        }

        @Override
        public int compareTo(Pair e2)
        {
            return sgn(e2.d - d);
        }

        @Override
        public String toString() { return "E["+palette+from+";"+d+"]"; }
    }

    public static int sgn(double d) { return d > 0.0 ? +1 : d < 0.0 ? -1 : 0; }

    public final static int distance(Pixel p, Pixel q)
    {
        return 3*(p.r-q.r)*(p.r-q.r) + 6*(p.g-q.g)*(p.g-q.g) + (p.b-q.b)*(p.b-q.b);
    }

    public final static Comparator<Pixel> LUMOSITY_COMP = (p1,p2) -> 3*(p1.r-p2.r)+6*(p1.g-p2.g)+(p1.b-p2.b);


    public final static class ArrangementResult
    {
        private List<Pair> pairs;

        public ArrangementResult(List<Pair> pairs)
        {
            this.pairs = pairs;
        }

        /** Provide the output image */
        public BufferedImage finalImage()
        {
            BufferedImage target = pairs.get(0).from.img;
            BufferedImage res = new BufferedImage(target.getWidth(),
                target.getHeight(), BufferedImage.TYPE_INT_RGB);
            for(Pair p : pairs) {
                Pixel left = p.from;
                Pixel right = p.palette;
                res.setRGB(left.x, left.y, right.val);
            }
            return res;
        }

        /** Provide an interpolated image. 0 le;= alpha le;= 1 */
        public BufferedImage interpolateImage(double alpha)
        {
            BufferedImage target = pairs.get(0).from.img;
            int wt = target.getWidth(), ht = target.getHeight();
            BufferedImage palette = pairs.get(0).palette.img;
            int wp = palette.getWidth(), hp = palette.getHeight();
            int w = Math.max(wt, wp), h = Math.max(ht, hp);
            BufferedImage res = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
            int x0t = (w-wt)/2, y0t = (h-ht)/2;
            int x0p = (w-wp)/2, y0p = (h-hp)/2;
            double a0 = (3.0 - 2.0*alpha)*alpha*alpha;
            double a1 = 1.0 - a0;
            for(Pair p : pairs) {
                Pixel left = p.from;
                Pixel right = p.palette;
                int x = (int) (a1 * (right.x + x0p) + a0 * (left.x + x0t));
                int y = (int) (a1 * (right.y + y0p) + a0 * (left.y + y0t));
                if ( x < 0 || x >= w ) System.out.println("x="+x+", w="+w+", alpha="+alpha);
                if ( y < 0 || y >= h ) System.out.println("y="+y+", h="+h+", alpha="+alpha);
                res.setRGB(x, y, right.val);
            }
            return res;
        }
    }

    public ArrangementResult rearrange(BufferedImage target, BufferedImage palette)
    {
        List<Pixel> targetPixels = getColors(target);
        int n = targetPixels.size();
        System.out.println("total Pixels "+n);
        Collections.sort(targetPixels, LUMOSITY_COMP);

        final double[][] energy = energy(target);

        List<Pixel> palettePixels = getColors(palette);
        Collections.sort(palettePixels, LUMOSITY_COMP);

        ArrayList<Pair> pairs = new ArrayList<>(n);
        for(int i = 0; i < n; i++) {
            Pixel pal = palettePixels.get(i);
            Pixel to = targetPixels.get(i);
            pairs.add(new Pair(pal, to));
        }
        correct(pairs, (p1,p2) -> sgn(p2.d*p2.from.b - p1.d*p1.from.b));
        correct(pairs, (p1,p2) -> sgn(p2.d*p2.from.r - p1.d*p1.from.r));
        // generates visible circular artifacts: correct(pairs, (p1,p2) -> sgn(p2.d*p2.from.cd() - p1.d*p1.from.cd()));
        correct(pairs, (p1,p2) -> sgn(energy[p2.from.x][p2.from.y]*p2.d - energy[p1.from.x][p1.from.y]*p1.d));
        correct(pairs, (p1,p2) -> sgn(p2.d/(1+energy[p2.from.x][p2.from.y]) - p1.d/(1+energy[p1.from.x][p1.from.y])));
        // correct(pairs, null);
        return new ArrangementResult(pairs);

    }

    /**
     * derive an energy map, to detect areas of lots of change.
     */
    public double[][] energy(BufferedImage img)
    {
        int n = img.getWidth();
        int m = img.getHeight();
        double[][] res = new double[n][m];
        for(int x = 0; x < n; x++) {
            for(int y = 0; y < m; y++) {
                int rgb0 = img.getRGB(x,y);
                int count = 0, sum = 0;
                if ( x > 0 ) {
                    count++; sum += dist(rgb0, img.getRGB(x-1,y));
                    if ( y > 0 ) { count++; sum += dist(rgb0, img.getRGB(x-1,y-1)); }
                    if ( y < m-1 ) { count++; sum += dist(rgb0, img.getRGB(x-1,y+1)); }
                }
                if ( x < n-1 ) {
                    count++; sum += dist(rgb0, img.getRGB(x+1,y));
                    if ( y > 0 ) { count++; sum += dist(rgb0, img.getRGB(x+1,y-1)); }
                    if ( y < m-1 ) { count++; sum += dist(rgb0, img.getRGB(x+1,y+1)); }
                }
                if ( y > 0 ) { count++; sum += dist(rgb0, img.getRGB(x,y-1)); }
                if ( y < m-1 ) { count++; sum += dist(rgb0, img.getRGB(x,y+1)); }
                res[x][y] = Math.sqrt((double)sum/count);
            }
        }
        return res;
    }

    public int dist(int rgb0, int rgb1) {
        int r0 = ((rgb0 & 0xFF0000) >> 16);
        int g0 = ((rgb0 & 0x00FF00) >> 8);
        int b0 = ((rgb0 & 0x0000FF));
        int r1 = ((rgb1 & 0xFF0000) >> 16);
        int g1 = ((rgb1 & 0x00FF00) >> 8);
        int b1 = ((rgb1 & 0x0000FF));
        return 3*(r0-r1)*(r0-r1) + 6*(g0-g1)*(g0-g1) + (b0-b1)*(b0-b1);
    }

    private void correct(ArrayList<Pair> pairs, Comparator<Pair> comp)
    {
        Collections.sort(pairs, comp);
        int n = pairs.size();
        int limit = Math.min(n, 133); // n / 1000;
        int limit2 = Math.max(1, n / 3 - limit);
        int step = (2*limit + 2)/3;
        for(int base = 0; base < limit2; base += step ) {
            List<Pixel> list1 = new ArrayList<>();
            List<Pixel> list2 = new ArrayList<>();
            for(int i = base; i < base+limit; i++) {
                list1.add(pairs.get(i).from);
                list2.add(pairs.get(i).palette);
            }
            Map<Pixel, Pixel> connection = rematch(list1, list2);
            int i = base;
            for(Pixel p : connection.keySet()) {
                pairs.set(i++, new Pair(p, connection.get(p)));
            }
        }
    }

    /**
     * Glue code to do an hungarian algorithm distance optimization.
     */
    public Map<Pixel,Pixel> rematch(List<Pixel> liste1, List<Pixel> liste2)
    {
        int n = liste1.size();
        double[][] cost = new double[n][n];
        Set<Pixel> s1 = new HashSet<>(n);
        Set<Pixel> s2 = new HashSet<>(n);
        for(int i = 0; i < n; i++) {
            Pixel ii = liste1.get(i);
            for(int j = 0; j < n; j++) {
                Pixel ij = liste2.get(j);
                cost[i][j] = -distance(ii,ij);
            }
        }
        Map<Pixel,Pixel> res = new HashMap<>();
        int[] resArray = Hungarian.hungarian(cost);
        for(int i = 0; i < resArray.length; i++) {
            Pixel ii = liste1.get(i);
            Pixel ij = liste2.get(resArray[i]);
            res.put(ij, ii);
        }
        return res;
    }

    public static List<Pixel> getColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Pixel> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(new Pixel(img, x, y));
            }
        }
        return colors;
    }

    public static List<Integer> getSortedTrueColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(img.getRGB(x, y));
            }
        }
        Collections.sort(colors);
        return colors;
    }

    public static void main(String[] args) throws Exception {
        int i = 0;
        String mode = args[i++];
        PixelRearranger pr = new PixelRearranger(mode);
        String a1 = args[i++];
        File in1 = new File(a1);
        String a2 = args[i++];
        File in2 = new File(a2);
        File out = new File(args[i++]);
        //
        BufferedImage target = ImageIO.read(in1);
        BufferedImage palette = ImageIO.read(in2);
        long t0 = System.currentTimeMillis();
        ArrangementResult result = pr.rearrange(target, palette);
        BufferedImage resultImg = result.finalImage();
        long t1 = System.currentTimeMillis();
        System.out.println("took "+0.001*(t1-t0)+" s");
        ImageIO.write(resultImg, "png", out);
        // Check validity
        List<Integer> paletteColors = getSortedTrueColors(palette);
        List<Integer> resultColors = getSortedTrueColors(resultImg);
        System.out.println("validate="+paletteColors.equals(resultColors));
        // In Mode A we do some animation!
        if ( "A".equals(mode) ) {
            for(int j = 0; j <= 50; j++) {
                BufferedImage stepImg = result.interpolateImage(0.02 * j);
                File oa = new File(String.format("anim/%s-%s-%02d.png", a1, a2, j));
                ImageIO.write(stepImg, "png", oa);
            }
        }
    }
}

Текущее время работы составляет от 20 до 30 секунд для каждой пары изображений, но есть множество настроек, которые заставляют его работать быстрее или, возможно, получить немного более качественное изображение.

Похоже, что моей репутации новичка недостаточно для такого количества ссылок / изображений, поэтому вот текстовый ярлык к моей папке на дисках Google для образцов изображений: http://goo.gl/qZHTao

Сначала я хотел показать образцы:

Люди -> Мона Лиза http://goo.gl/mGvq9h

Программа отслеживает все координаты точек, но сейчас я чувствую себя измотанным и пока не планирую делать анимацию. Если бы я потратил больше времени, я мог бы сам сделать венгерский алгоритм или настроить график локальной оптимизации своей программы.

Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.