BuildFun и SolveFun
Ну, это заняло довольно много времени, и я не совсем уверен, обманщик решает или нет. Хотя у него есть доступ ко всему лабиринту все время, он только смотрит на ячейку, в которой он находится, на стены, окружающие его, и, если между ними нет стены, на соседние с ней клетки. Если это противоречит правилам, пожалуйста, дайте мне знать, и я постараюсь изменить это.
Во всяком случае, вот код:
#Architect function
def BuildFun(size,seed):
#Initialise grid and ensure inputs are valid
if size<15:size=15
if size>50:size=50
if seed<4:seed=4
if seed>size:seed=size
grid=[]
for x in range(size):
gridbuilder=[]
for y in range(size):gridbuilder.append([0,1,1])
grid.append(gridbuilder)
coords=[0,0]
grid[0][0][0]=1
#Generate maze
while 1:
#Choose a preffered direction based on location in grid and seed
pref=((((coords[0]+coords[1]+2)*int(size/2))%seed)+(seed%(abs(coords[0]-coords[1])+1)))%4
#Find legal moves
opt=[]
if coords[0]>0:opt+=[0] if grid[coords[0]-1][coords[1]][0]==0 else []
if coords[1]<size-1:opt+=[1] if grid[coords[0]][coords[1]+1][0]==0 else []
if coords[0]<size-1:opt+=[2] if grid[coords[0]+1][coords[1]][0]==0 else []
if coords[1]>0:opt+=[3] if grid[coords[0]][coords[1]-1][0]==0 else []
#There are legal moves
if len(opt)>0:
moved=False
while not moved:
#Try to move in preffered direction
if pref in opt:
if pref==0:
coords[0]-=1
grid[coords[0]][coords[1]][0]=1
grid[coords[0]][coords[1]][2]=0
elif pref==1:
grid[coords[0]][coords[1]][1]=0
coords[1]+=1
grid[coords[0]][coords[1]][0]=1
elif pref==2:
grid[coords[0]][coords[1]][2]=0
coords[0]+=1
grid[coords[0]][coords[1]][0]=1
else:
coords[1]-=1
grid[coords[0]][coords[1]][0]=1
grid[coords[0]][coords[1]][1]=0
moved=True
#Change preferred direction if unable to move
else:
pref+=1
if pref==4:pref=0
#There aren't legal moves
else:
moved=False
#Return to a previously visited location
if not moved:
try:
if grid[coords[0]-1][coords[1]][0]==1 and grid[coords[0]-1][coords[1]][2]==0:
grid[coords[0]][coords[1]][0]=2
coords[0]-=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]][coords[1]+1][0]==1 and grid[coords[0]][coords[1]][1]==0:
grid[coords[0]][coords[1]][0]=2
coords[1]+=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]+1][coords[1]][0]==1 and grid[coords[0]][coords[1]][2]==0:
grid[coords[0]][coords[1]][0]=2
coords[0]+=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]][coords[1]-1][0]==1 and grid[coords[0]][coords[1]-1][1]==0:
grid[coords[0]][coords[1]][0]=2
coords[1]-=1
moved=True
except:pass
#Check if finished
fin=True
for x in grid:
for y in x:
if y[0]==0:
fin=False
break
if not fin:break
if fin:break
for x in grid:
for y in x:
y[0]=0
#Find positions for start and finish such that the route between them is as long as possible
lsf=[[0,0],[0,0],0]
for y in range(size):
for x in range(size):
#Check all start positions
lengths=[]
coords=[[y,x,4,0]]
while len(coords)>0:
#Spread tracers out from start to the rest of the maze
for coord in coords:
opt=[]
if coord[0]>0:opt+=[0] if grid[coord[0]-1][coord[1]][2]==0 else []
opt+=[1] if grid[coord[0]][coord[1]][1]==0 else []
opt+=[2] if grid[coord[0]][coord[1]][2]==0 else []
if coord[1]>0:opt+=[3] if grid[coord[0]][coord[1]-1][1]==0 else []
try:opt.remove(coord[2])
except:pass
#Dead end, tracer dies and possible end point is recorded along with length
if len(opt)==0:
lengths.append([coord[0],coord[1],coord[3]])
coords.remove(coord)
else:
#Create more tracers at branch points
while len(opt)>1:
if opt[0]==0:coords.append([coord[0]-1,coord[1],2,coord[3]+1])
elif opt[0]==1:coords.append([coord[0],coord[1]+1,3,coord[3]+1])
elif opt[0]==2:coords.append([coord[0]+1,coord[1],0,coord[3]+1])
else:coords.append([coord[0],coord[1]-1,1,coord[3]+1])
del opt[0]
if opt[0]==0:
coord[0]-=1
coord[2]=2
coord[3]+=1
elif opt[0]==1:
coord[1]+=1
coord[2]=3
coord[3]+=1
elif opt[0]==2:
coord[0]+=1
coord[2]=0
coord[3]+=1
else:
coord[1]-=1
coord[2]=1
coord[3]+=1
#Find furthest distance and, if it's longer than the previous one, the start/end positions get updated
lengths=sorted(lengths,key=lambda x:x[2],reverse=True)
if lengths[0][2]>lsf[2]:lsf=[[y,x],[lengths[0][0],lengths[0][1]],lengths[0][2]]
#Find number of walls and output maze
w=draw(grid,size,lsf[0],lsf[1])
#Output maze information
print('Start = '+str(lsf[0]))
print('End = '+str(lsf[1]))
print('Distance = '+str(lsf[2]))
print('Walls = '+str(w))
print('Score = '+str(float(lsf[2])/float(w))[:5])
#Convert array grid to binary strings horizontal and vertical
horizontal=vertical=''
for y in range(size):
for x in range(size-1):vertical+=str(grid[y][x][1])
for y in range(size-1):
for x in range(size):horizontal+=str(grid[y][x][2])
#Save maze information to text file for use with SolveFun
save=open('Maze.txt','w')
save.write(str(size)+'\n'+str(lsf[0][0])+' '+str(lsf[0][1])+'\n'+str(lsf[1][0])+' '+str(lsf[1][1])+'\n'+horizontal+'\n'+vertical)
save.close()
#Solver function
def SolveFun():
try:
#Get maze information from text file
save=open('Maze.txt','r')
data=save.readlines()
save.close()
size=int(data[0])
s=data[1].rsplit(' ')
start=[int(s[0]),int(s[1])]
e=data[2].rsplit(' ')
end=[int(e[0]),int(e[1])]
horizontal=data[3].rstrip('\n')
vertical=data[4]
#Build maze from information
grid=[]
for y in range(size):
grid.append([])
for x in range(size):
grid[y].append([0,1,1])
for y in range(size):
for x in range(size-1):
grid[y][x][1]=int(vertical[y*(size-1)+x])
for y in range(size-1):
for x in range(size):
grid[y][x][2]=int(horizontal[y*size+x])
path=''
cpath=''
bs=0
pos=start[:]
grid[pos[0]][pos[1]][0]=1
while pos!=end:
#Want to move in direction of finish
if end[0]<pos[0] and pos[0]-end[0]>=abs(pos[1]-end[1]):pref=0
elif end[1]>pos[1] and end[1]-pos[1]>=abs(pos[0]-end[0]):pref=1
elif end[0]>pos[0] and end[0]-pos[0]>=abs(pos[1]-end[1]):pref=2
else:pref=3
#Find legal moves
opt=[]
if pos[0]>0:
if grid[pos[0]-1][pos[1]][2]==0:opt+=[0]if grid[pos[0]-1][pos[1]][0]==0 else[]
if pos[1]>0:
if grid[pos[0]][pos[1]-1][1]==0:opt+=[3]if grid[pos[0]][pos[1]-1][0]==0 else[]
if grid[pos[0]][pos[1]][2]==0:opt+=[2]if grid[pos[0]+1][pos[1]][0]==0 else[]
if grid[pos[0]][pos[1]][1]==0:opt+=[1]if grid[pos[0]][pos[1]+1][0]==0 else[]
if len(opt)>0:
moved=False
while not moved:
#Try to move in preferred direction
if pref in opt:
if pref==0:
pos[0]-=1
path+='0'
cpath+='0'
elif pref==1:
pos[1]+=1
path+='1'
cpath+='1'
elif pref==2:
pos[0]+=1
path+='2'
cpath+='2'
else:
pos[1]-=1
path+='3'
cpath+='3'
grid[pos[0]][pos[1]][0]=1
moved=True
#Change preferred direction by 1
else:
pref=(pref+1)%4
#No legal moves, backtrack
else:
bs+=1
grid[pos[0]][pos[1]][0]=2
if int(cpath[len(cpath)-1])==0:
pos[0]+=1
path+='2'
elif int(cpath[len(cpath)-1])==1:
pos[1]-=1
path+='3'
elif int(cpath[len(cpath)-1])==2:
pos[0]-=1
path+='0'
else:
pos[1]+=1
path+='1'
cpath=cpath[:len(cpath)-1]
#Output maze with solution as well as total steps and wasted steps
draw(grid,size,start,end)
print('\nPath taken:')
print(str(len(path))+' steps')
print(str(bs)+' backsteps')
print(str(bs*2)+' wasted steps')
except:print('Could not find maze')
def draw(grid,size,start,end):
#Build output in string d
d=' '
for x in range(size):d+=' '+str(x)[0]
d+='\n '
for x in range(size):d+=' ' if len(str(x))==1 else ' '+str(x)[1]
d+='\n '+'_'*(size*2-1)
w=0
for y in range(size):
d+='\n'+str(y)+' |' if len(str(y))==1 else '\n'+str(y)+' |'
for x in range(size):
if grid[y][x][2]:
if start==[y,x]:d+=UL.S+'S'+UL.E
elif end==[y,x]:d+=UL.S+'F'+UL.E
elif grid[y][x][0]==1:d+=UL.S+'*'+UL.E
else:d+='_'
w+=1
else:
if start==[y,x]:d+='S'
elif end==[y,x]:d+='F'
elif grid[y][x][0]==1:d+='*'
else:d+=' '
if grid[y][x][1]:
d+='|'
w+=1
else:d+=' '
#Output maze and return number of walls
print(d)
w-=size*2
return w
#Underlines text
class UL:
S = '\033[4m'
E = '\033[0m'
Я понимаю, что это смехотворно долго и не особенно легко для чтения, но я ленив, так что это так.
BuildFun
Архитектор BuildFun - это довольно простая программа, генерирующая лабиринт, которая всегда будет создавать «идеальный» лабиринт (один без петель, где любые две точки всегда будут иметь ровно один путь между ними). Он основывает свою логику на исходном входе, что означает, что сгенерированные лабиринты являются псевдослучайными с часто повторяющимися образцами, и при одинаковом начальном значении и размере будет создан тот же лабиринт.
После того, как лабиринт создан, программа попытается максимизировать оценку лабиринта путем поиска начальной и конечной точек, которые приводят к самому длинному пути между ними. Для этого он проходит через каждую начальную точку, распределяет трассеры, чтобы найти конечную точку, наиболее удаленную от нее, и выбирает комбинацию с самым длинным путем.
После этого он рисует лабиринт, считает стены и выводит информацию лабиринта. Это начальная точка, конечная точка, расстояние между ними, количество стен и оценка. Он также форматирует эту информацию в описанном выше стиле для размера, начала и конца, горизонтальных и вертикальных стен и сохраняет ее в текстовом файле с именем Maze.txt для последующего использования.
SolveFun
Решатель SolveFun использует текстовый файл Maze.txt в качестве входных данных и работает очень похоже на архитектуру. Для каждого движения он будет выбирать направление, в котором он хочет идти, основываясь на его относительном положении до конца, а затем он будет смотреть на окружающие его стены. Если стены там нет, она проверит, находилась ли она в соседней с ней ячейке, и если нет, то будет добавлена в качестве возможного варианта. Затем он будет двигаться в направлении, наиболее близком к предпочтительному, при условии, что у него есть опции. Если у него нет опций, он будет возвращаться, пока не получит. Это продолжается, пока не достигнет конца.
По мере движения он записывает путь, по которому он идет, в переменном пути, который используется в конце для вывода общего количества шагов. Он также записывает, сколько раз ему пришлось возвращаться назад, чтобы вычислить потерянные шаги в конце. Когда он достигнет конца, он выведет лабиринт с кратчайшим путем от начала до конца, отмеченным символом *
s.
Как запустить
Из-за метода вывода лабиринта (который включает в себя подчеркивание определенных символов), это должно быть запущено из командной строки в форме
python -c 'import filename;filename.BuildFun(Size, Seed)'
и
python -c 'import filename;filename.SolveFun()'
где Size - целое число от 15 до 50 (включительно), а Seed - целое число от 4 до размера (включительно).