Произвольное преобразование базы [закрыто]


10

Создайте подпрограмму, которая принимает массив блоков в одной числовой базовой системе, и преобразует их в массив блоков в другой числовой базовой системе. Системы from и to являются произвольными и должны приниматься в качестве параметра. Входной массив может иметь произвольную длину (если используется язык, в котором длины массива не хранятся вместе с массивом, например C, параметр длины должен быть передан функции).

Вот как это должно работать:

fromArray = [1, 1]
fromBase = 256
toBase = 16
result = convertBase(fromArray, fromBase, toBase);

Который должен возвращаться [0, 1, 0, 1]или возможно [1, 0, 1](ведущие 0s являются необязательными, поскольку они не меняют значение ответа).

Вот несколько тестовых векторов:

  1. Вектор проверки идентичности

    fromArray = [1, 2, 3, 4]
    fromBase = 16
    toBase = 16
    result = [1, 2, 3, 4]
    
  2. Тривиальный тестовый вектор

    fromArray = [1, 0]
    fromBase = 10
    toBase = 100
    result = [10]
    
  3. Большой тест вектор

    fromArray = [41, 15, 156, 123, 254, 156, 141, 2, 24]
    fromBase = 256
    toBase = 16
    result = [2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8]
    
  4. Действительно большой тестовый вектор

    fromArray = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    fromBase = 2
    toBase = 10
    result = [1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3]
    
  5. Нечетный базовый вектор

    fromArray = [41, 42, 43]
    fromBase = 256
    toBase = 36
    result = [1, 21, 29, 22, 3]
    

Другие критерии / правила:

  1. Все целочисленные переменные должны помещаться в стандартное 32-разрядное целое число со знаком для всех допустимых диапазонов ввода.

  2. Вы можете преобразовать в промежуточное представление, если посредник - не более чем массив 32-битных целых чисел со знаком.

  3. Ожидайте обработки баз со 2 по 256. Нет необходимости поддерживать более высокие базы, чем эта (но если вы хотите, во что бы то ни стало).

  4. Ожидайте обработки входных и выходных размеров как минимум до 1000 элементов. Решение, которое масштабируется до 2 ^ 32-1 элементов, было бы лучше, но 1000 просто отлично.

  5. Это не обязательно иметь самый короткий код, который будет соответствовать этим правилам. Речь идет о самом чистом и элегантном коде.

Теперь это не совсем тривиально, так что ответ, который почти работает, может быть принят!


Означает ли # 1, что мы не можем использовать тип bigint?
Кит Рэндалл

@Keith: правильно. Только 32-битные целые числа.
ircmaxell

Вы говорите «целое число со знаком», но примеры приведены только для положительных целых чисел, поэтому: должны ли мы обрабатывать отрицательные значения?
Eelvex

@Eelvex: я не вижу необходимости обрабатывать негативы. Если обрабатывается негатив, он будет за пределами конвертера.
ircmaxell

Они всегда целочисленные основания?
Питер Олсон

Ответы:


8

питон

# divides longnum src (in base src_base) by divisor
# returns a pair of (longnum dividend, remainder)
def divmod_long(src, src_base, divisor):
  dividend=[]
  remainder=0
  for d in src:
    (e, remainder) = divmod(d + remainder * src_base, divisor)
    if dividend or e: dividend += [e]
  return (dividend, remainder)

def convert(src, src_base, dst_base):
  result = []
  while src:
    (src, remainder) = divmod_long(src, src_base, dst_base)
    result = [remainder] + result
  return result

Спасибо. Я искал такую ​​рутину. Мне понадобилось время, чтобы преобразовать его в Javascript. Я, наверное, немного поиграю в гольф и выложу сюда для удовольствия.
Стивен Перельсон

5

Вот решение Haskell

import Data.List
import Control.Monad

type Numeral = (Int, [Int])

swap              ::  (a,b) -> (b,a)
swap (x,y)        =   (y,x)

unfoldl           ::  (b -> Maybe (b,a)) -> b -> [a]
unfoldl f         =   reverse . unfoldr (fmap swap . f)

normalize         ::  Numeral -> Numeral
normalize (r,ds)  =   (r, dropWhile (==0) ds)

divModLongInt            ::  Numeral -> Int -> (Numeral,Int)
divModLongInt (r,dd) dv  =   let  divDigit c d = swap ((c*r+d) `divMod` dv)
                                  (remainder, quotient) = mapAccumR divDigit 0 (reverse dd)
                             in   (normalize (r,reverse quotient), remainder)

changeRadixLongInt       ::  Numeral -> Int -> Numeral
changeRadixLongInt n r'  =   (r', unfoldl produceDigit n)
  where  produceDigit  (_,[])   =  Nothing
         produceDigit  x        =  Just (divModLongInt x r')

changeRadix :: [Int] -> Int -> Int -> [Int]
changeRadix digits origBase newBase = snd $ changeRadixLongInt (origBase,digits) newBase

doLine line = let [(digits,rest0)] = reads line
                  [(origBase,rest1)] = reads rest0
                  [(newBase,rest2)] = reads rest1
              in show $ changeRadix digits origBase newBase

main = interact (unlines . map doLine . lines)

И запускаю тесты из вопроса:

$ ./a.out 
[1,2,3,4] 16 16
[1,2,3,4]
[1,0] 10 100
[10]
[41, 15, 156, 123, 254, 156, 141, 2, 24] 256 16
[2,9,0,15,9,12,7,11,15,14,9,12,8,13,0,2,1,8]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 2 10
[1,2,3,7,9,4,0,0,3,9,2,8,5,3,8,0,2,7,4,8,9,9,1,2,4,2,2,3]
[41, 42, 43] 256 36
[1,21,29,22,3]

Ух ты. Это потрясающе! Теперь, если бы я только мог это понять: -) ... (но это моя задача сейчас) ...
ircmaxell

5

р

Обрабатывает многие тысячи элементов * менее чем за минуту.

addb <- function(v1,v2,b) {
    ml <- max(length(v1),length(v2))
    v1 <- c(rep(0, ml-length(v1)),v1)
    v2 <- c(rep(0, ml-length(v2)),v2)
    v1 = v1 + v2
    resm = v1%%b
    resd = c(floor(v1/b),0)
    while (any(resd != 0)) {
        v1 = c(0,resm) + resd
        resm = v1%%b
        resd = c(floor(v1/b),0)
    }
    while (v1[1] == 0) v1 = v1[-1]
    return(v1)
}

redb <- function(v,b) {
    return (addb(v,0,b))
}

mm = rbind(1)

mulmat <- function(fromb, tob, n) {
    if (dim(mm)[2] >= n) return(mm)
    if (n == 1) return(1)
    newr = addb(mulmat(fromb,tob,n-1) %*% rep(fromb-1,n-1), 1, tob)
    newm = mulmat(fromb,tob,n-1)
    while (is.null(dim(newm)) || dim(newm)[1] < length(newr)) newm = rbind(0,newm)
    mm <<-  cbind(newr, newm)
    return(mm)
}

dothelocomotion <- function(fromBase, toBase, v) {
    mm  <<- rbind(1)
    return(redb(mulmat(fromBase, toBase, length(v)) %*% v, toBase))
}

* для> 500 элементов вы должны повысить уровень рекурсии по умолчанию или не сбрасывать mmматрицу наdothelocomotion()

Примеры:

v1 = c(41, 15, 156, 123, 254, 156, 141, 2, 24)
dothelocomotion(256,16,v1)
2  9  0 15  9 12  7 11 15 14  9 12  8 13  0  2  1  8

dothelocomotion(256,36,c(41,42,43))
1 21 29 22  3

dothelocomotion(2,10, rep(1,90))
1 2 3 7 9 4 0 0 3 9 2 8 5 3 8 0 2 7 4 8 9 9 1 2 4 2 2 3

3

Менее запутанная и более быстрая версия JavaScript:

function convert (number, src_base, dst_base)
{
    var res = [];
    var quotient;
    var remainder;

    while (number.length)
    {
        // divide successive powers of dst_base
        quotient = [];
        remainder = 0;
        var len = number.length;
        for (var i = 0 ; i != len ; i++)
        {
            var accumulator = number[i] + remainder * src_base;
            var digit = accumulator / dst_base | 0; // rounding faster than Math.floor
            remainder = accumulator % dst_base;
            if (quotient.length || digit) quotient.push(digit);
        }

        // the remainder of current division is the next rightmost digit
        res.unshift(remainder);

        // rinse and repeat with next power of dst_base
        number = quotient;
    }

    return res;
}

Время вычислений увеличивается как o (количество цифр 2 ).
Не очень эффективно для больших количеств.
В специализированных версиях используется кодирование base64 с использованием базовых соотношений для ускорения вычислений.


делаю дело бога сын
Брайк

2

Javascript

Спасибо Кит Рэндалл за ваш ответ на Python. Я боролся с мелочами своего решения и в итоге копировал вашу логику. Если кто-то проголосует за это решение, потому что оно работает, тогда, пожалуйста, также проголосуйте за решение Кейта.

function convert(src,fb,tb){
  var res=[]
  while(src.length > 0){
    var a=(function(src){
      var d=[];var rem=0
      for each (var i in src){
        var c=i+rem*fb
        var e=Math.floor(c/tb)
        rem=c%tb
        d.length||e?d.push(e):0
      }
      return[d,rem]
    }).call(this,src)
    src=a[0]
    var rem=a[1]
    res.unshift(rem)
  }
  return res
}

тесты

console.log(convert([1, 2, 3, 4], 16, 16))
console.log(convert([1, 0], 10, 100))
console.log(convert([41, 15, 156, 123, 254, 156, 141, 2, 24], 256, 16))
console.log(convert([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 2, 10))
console.log(convert([41, 42, 43], 256, 36))

/*
Produces:
[1, 2, 3, 4]
[10]
[2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8]
[1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3]
[1, 21, 29, 22, 3]
*/

Это, вероятно, может сильно уменьшиться, но я на самом деле хочу использовать его для небольшого побочного проекта. Поэтому я сохранил его читабельным (несколько) и пытался контролировать переменные.


как это javascript? для каждого?
Эрнан Эче

Никаких имен переменных выше 3 символов, устаревшего for eachвыражения и потрясающих конструкций вроде d.length||e?d.push(e):0... Это запутанный код или что-то в этом роде? Вы можете написать то же самое с понятным синтаксисом и лучшей производительностью.

@kuroineko Это код гольф. Чего ты ожидал? Чистый, читаемый код с использованием современных стандартов? Я никогда не утверждал, что мой ответ был идеальным, и я, конечно, не использовал бы его, как в производственном проекте.
Стивен Перельсон

Ну, на самом деле мне почему-то нужен этот алгоритм в JavaScript, и мне пришлось переписать его с нуля, взяв за основу решение на python. Я ценю ваш вклад, но для практических целей его вряд ли можно было использовать вообще ИМХО.

2

Mathematica

Переменные не определены, любые входные данные принимаются до тех пор, пока они помещаются в память.

f[i_, sb_, db_] := IntegerDigits[FromDigits[i, sb], db];

Тест-драйв:

f[{1,2,3,4},16,16]
f[{1,0},10,100]
f[{41,15,156,123,254,156,141,2,24},256,16]
f[{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},2,10]
f[{41,42,43},256,36]

Вне

{1,2,3,4}
{10}
{2,9,0,15,9,12,7,11,15,14,9,12,8,13,0,2,1,8}
{1,2,3 7,9,4,0,0,3,9,2,8,5,3,8,0,2,7,4,8,9,9,1,2,4,2,2,3}
{1,21,29,22,3}

1

Scala:

def toDecimal (li: List[Int], base: Int) : BigInt = li match {                       
  case Nil => BigInt (0)                                                             
  case x :: xs => BigInt (x % base) + (BigInt (base) * toDecimal (xs, base)) }  

def fromDecimal (dec: BigInt, base: Int) : List[Int] =
  if (dec==0L) Nil else (dec % base).toInt :: fromDecimal (dec/base, base)

def x2y (value: List[Int], from: Int, to: Int) =
  fromDecimal (toDecimal (value.reverse, from), to).reverse

Тест-код с тестами:

def test (li: List[Int], from: Int, to: Int, s: String) = {
 val erg= "" + x2y (li, from, to)
 if (! erg.equals (s))
   println ("2dec: " + toDecimal (li, from) + "\n\terg: " + erg + "\n\texp: " + s)
}   

 test (List (1, 2, 3, 4), 16, 16, "List(1, 2, 3, 4)")
 test (List (1, 0), 10, 100, "List(10)")
 test (List (41, 15, 156, 123, 254, 156, 141, 2, 24), 256, 16, "List(2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8)") 
 test (List (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 
   2, 10, "List(1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3)") 
 test (List (41, 42, 43), 256, 36, "List(1, 21, 29, 22, 3)")

Пройдены все тесты.


1

J 109 105

Обрабатывает тысячи цифр без пота. Нет целых чисел вреда!

e=:<.@%,.|~
t=:]`}.@.(0={.)@((e{:)~h=:+//.@)^:_
s=:[t[:+/;.0]*|.@>@(4 :'x((];~[t((*/e/)~>@{.)h)^:(<:#y))1')

Примеры

256 16 s 41 15 156 123 254 156 141 2 24
2 9 0 15 9 12 7 11 15 14 9 12 8 13 0 2 1 8

256 36 s 41 42 43
1 21 29 22 3

16 16 s 1 2 3 4
1 2 3 4

256 46 s ?.1000$45
14 0 4 23 42 7 11 30 37 10 28 44 ...

time'256 46 s ?.3000$45'  NB. Timing conversion of 3000-vector.
1.96s

Это становится короче.


0

Smalltalk, 128

o:=[:n :b|n>b ifTrue:[(o value:n//b value:b),{n\\b}]ifFalse:[{n}]].
f:=[:a :f :t|o value:(a inject:0into:[:s :d|s*f+d])value:t].

Тесты:

f value:#[41 15 156 123 254 156 141 2 24]
  value:256
  value:16. 
    -> #(2 9 0 15 9 12 7 11 15 14 9 12 8 13 0 2 1 8)

f value:#[1 2 3 4]
  value:16
  value:16.
    -> #(1 2 3 4)

f value:#[1 0]
  value:10
  value:100.
    -> #(10)

f value:#[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
  value:2
  value:10.
    -> #(1 2 3 7 9 4 0 0 3 9 2 8 5 3 8 0 2 7 4 8 9 9 1 2 4 2 2 3)

f value:#[41 42 43]
  value:256
  value:36.
    -> #(1 21 29 22 3)

и для вашего особого развлечения ( задача: выяснить, что такого особенного во входном значении ):

f value:#[3 193 88 29 73 27 40 245 35 194 58 189 243 91 104 156 144 128 0 0 0 0]
  value:256
  value:1000.
    -> #(1 405 6 117 752 879 898 543 142 606 244 511 569 936 384 0 0 0) 
Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику в отношении файлов cookie и Политику конфиденциальности.
Licensed under cc by-sa 3.0 with attribution required.