Во время работы с числами я нашел интересную перестановку, которую вы можете сгенерировать из списка чисел. Если вы будете повторять одну и ту же перестановку достаточно много раз, вы всегда окажетесь в исходном массиве. Давайте использовать следующий список:
[1, 2, 3, 4, 5]
В качестве примера
Обратный массив. Теперь наш массив
[5, 4, 3, 2, 1]
Переупорядочить (поменять) каждую пару. В нашем списке 2 пары:
[5, 4]
и[3, 2]
. К сожалению, мы не можем сгруппировать их1
в пару, поэтому оставим их в покое. После замены каждой пары новый массив:[4, 5, 2, 3, 1]
Повторите шаги 1 и 2, пока мы не вернемся к исходному массиву. Вот следующие 4 шага:
Step 2: Start: [4, 5, 2, 3, 1] Reversed: [1, 3, 2, 5, 4] Pairs Swapped: [3, 1, 5, 2, 4] Step 3: Start: [3, 1, 5, 2, 4] Reversed: [4, 2, 5, 1, 3] Pairs Swapped: [2, 4, 1, 5, 3] Step 4: Start: [2, 4, 1, 5, 3] Reversed: [3, 5, 1, 4, 2] Pairs Swapped: [5, 3, 4, 1, 2] Step 5: Start: [5, 3, 4, 1, 2] Reversed: [2, 1, 4, 3, 5] Pairs Swapped: [1, 2, 3, 4, 5] # No more steps needed because we are back to the original array
Если длина списка, n нечетная, всегда будет ровно n шагов, чтобы вернуться к исходному массиву. Если n четное, для возврата к исходному массиву всегда потребуется 2 шага, если только n не равно 2, и в этом случае потребуется 1 шаг (потому что реверс и свопинг - это одно и то же).
Ваша задача на сегодня (если вы решите принять ее) состоит в том, чтобы визуализировать этот набор шагов для списков произвольной длины. Вы должны написать программу или функцию, которая принимает одно положительное целое число n в качестве входных данных и выполняет этот набор шагов для списка [1, n]
. Вы должны вывести каждый промежуточный шаг по пути, будь то печать каждого шага или возврат их всех в виде списка шагов. Я не очень требователен к формату вывода, если ясно, что вы генерируете каждый шаг. Это означает (например) любой из них:
Вывод каждого шага в виде списка в STDOUT
Возврат списка списков
Возврат списка строковых представлений каждого шага
Возврат / вывод матрицы
было бы приемлемо.
Вы также должны вывести исходный массив, независимо от того, идет ли он в конце или в начале. (технически оба верны)
Вам придется обработать крайний случай 2, сделав 1 шаг вместо 2 , поэтому убедитесь, что ваше решение работает с вводом 2 (а 1 - это еще один потенциальный крайний случай).
Как обычно, это код-гольф , поэтому применяются стандартные лазейки, и вы пытаетесь сделать свое решение короче, чем любой другой на выбранном вами языке (или даже попытаться обыграть другой язык, который обычно короче вашего, если вы чувствуете себя лучше) за вызов).
Тест IO
1:
[1]
2:
[1, 2]
3:
[2, 3, 1]
[3, 1, 2]
[1, 2, 3]
4:
[3, 4, 1, 2]
[1, 2, 3, 4]
5:
[4, 5, 2, 3, 1]
[3, 1, 5, 2, 4]
[2, 4, 1, 5, 3]
[5, 3, 4, 1, 2]
[1, 2, 3, 4, 5]
7:
[6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 6]
[4, 6, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 7, 5]
[7, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7]
9:
[8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 8]
[6, 8, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 9, 7]
[9, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
И для хорошей меры, вот один гигантский контрольный пример:
27:
[26, 27, 24, 25, 22, 23, 20, 21, 18, 19, 16, 17, 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 11, 8, 13, 10, 15, 12, 17, 14, 19, 16, 21, 18, 23, 20, 25, 22, 27, 24, 26]
[24, 26, 22, 27, 20, 25, 18, 23, 16, 21, 14, 19, 12, 17, 10, 15, 8, 13, 6, 11, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 11, 4, 13, 6, 15, 8, 17, 10, 19, 12, 21, 14, 23, 16, 25, 18, 27, 20, 26, 22, 24]
[22, 24, 20, 26, 18, 27, 16, 25, 14, 23, 12, 21, 10, 19, 8, 17, 6, 15, 4, 13, 2, 11, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 11, 1, 13, 2, 15, 4, 17, 6, 19, 8, 21, 10, 23, 12, 25, 14, 27, 16, 26, 18, 24, 20, 22]
[20, 22, 18, 24, 16, 26, 14, 27, 12, 25, 10, 23, 8, 21, 6, 19, 4, 17, 2, 15, 1, 13, 3, 11, 5, 9, 7]
[9, 7, 11, 5, 13, 3, 15, 1, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 26, 14, 24, 16, 22, 18, 20]
[18, 20, 16, 22, 14, 24, 12, 26, 10, 27, 8, 25, 6, 23, 4, 21, 2, 19, 1, 17, 3, 15, 5, 13, 7, 11, 9]
[11, 9, 13, 7, 15, 5, 17, 3, 19, 1, 21, 2, 23, 4, 25, 6, 27, 8, 26, 10, 24, 12, 22, 14, 20, 16, 18]
[16, 18, 14, 20, 12, 22, 10, 24, 8, 26, 6, 27, 4, 25, 2, 23, 1, 21, 3, 19, 5, 17, 7, 15, 9, 13, 11]
[13, 11, 15, 9, 17, 7, 19, 5, 21, 3, 23, 1, 25, 2, 27, 4, 26, 6, 24, 8, 22, 10, 20, 12, 18, 14, 16]
[14, 16, 12, 18, 10, 20, 8, 22, 6, 24, 4, 26, 2, 27, 1, 25, 3, 23, 5, 21, 7, 19, 9, 17, 11, 15, 13]
[15, 13, 17, 11, 19, 9, 21, 7, 23, 5, 25, 3, 27, 1, 26, 2, 24, 4, 22, 6, 20, 8, 18, 10, 16, 12, 14]
[12, 14, 10, 16, 8, 18, 6, 20, 4, 22, 2, 24, 1, 26, 3, 27, 5, 25, 7, 23, 9, 21, 11, 19, 13, 17, 15]
[17, 15, 19, 13, 21, 11, 23, 9, 25, 7, 27, 5, 26, 3, 24, 1, 22, 2, 20, 4, 18, 6, 16, 8, 14, 10, 12]
[10, 12, 8, 14, 6, 16, 4, 18, 2, 20, 1, 22, 3, 24, 5, 26, 7, 27, 9, 25, 11, 23, 13, 21, 15, 19, 17]
[19, 17, 21, 15, 23, 13, 25, 11, 27, 9, 26, 7, 24, 5, 22, 3, 20, 1, 18, 2, 16, 4, 14, 6, 12, 8, 10]
[8, 10, 6, 12, 4, 14, 2, 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11, 27, 13, 25, 15, 23, 17, 21, 19]
[21, 19, 23, 17, 25, 15, 27, 13, 26, 11, 24, 9, 22, 7, 20, 5, 18, 3, 16, 1, 14, 2, 12, 4, 10, 6, 8]
[6, 8, 4, 10, 2, 12, 1, 14, 3, 16, 5, 18, 7, 20, 9, 22, 11, 24, 13, 26, 15, 27, 17, 25, 19, 23, 21]
[23, 21, 25, 19, 27, 17, 26, 15, 24, 13, 22, 11, 20, 9, 18, 7, 16, 5, 14, 3, 12, 1, 10, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 10, 3, 12, 5, 14, 7, 16, 9, 18, 11, 20, 13, 22, 15, 24, 17, 26, 19, 27, 21, 25, 23]
[25, 23, 27, 21, 26, 19, 24, 17, 22, 15, 20, 13, 18, 11, 16, 9, 14, 7, 12, 5, 10, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 27, 25]
[27, 25, 26, 23, 24, 21, 22, 19, 20, 17, 18, 15, 16, 13, 14, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
Удачи в гольф!
1 2 3 4 5
, нет 1 2 4 3 5
.
array[0]
будет только 1 в начале и в конце процесса до n = 999
. Если посмотреть на шаблон, кажется, что для каждого нечетного n первый элемент идет 1, n-1, 3, n - 3, 5, n - 5, 7...
вверх до n - 2, 3, n, 1
, что всегда будет делать n шагов. Я не вижу никакой причины, что этот шаблон изменился бы с большим n .
1, n, 2, n-2, 4, n-4, 6, n-6, 8, n-8, ...
и по индукции легко показать, что элемент в четном положении x перемещается в nx после одного шага и элемент в нечетной позиции x перемещается в n-x + 2 . Так что если n = 2k + 1 , то после 2k-го шага 1 будет на 2k , а на следующем шаге на n-2k = 1 .