Боль в Нэше (C ++)
Так назвали, потому что факт, что я должен был написать свой собственный решатель равновесия Нэша, был настоящей болью. Я поражен, что нет никаких доступных библиотек, решающих Nash!
#include <fstream>
#include <iostream>
#include <vector>
#include <array>
#include <random>
#include <utility>
typedef double NumT;
static const NumT EPSILON = 1e-5;
struct Index {
int me;
int them;
Index(int me, int them) : me(me), them(them) {}
};
struct Value {
NumT me;
NumT them;
Value(void) : me(0), them(0) {}
Value(NumT me, NumT them) : me(me), them(them) {}
};
template <int subDimMe, int subDimThem>
struct Game {
const std::array<NumT, 9> *valuesMe;
const std::array<NumT, 9> *valuesThemT;
std::array<int, subDimMe> coordsMe;
std::array<int, subDimThem> coordsThem;
Game(
const std::array<NumT, 9> *valuesMe,
const std::array<NumT, 9> *valuesThemT
)
: valuesMe(valuesMe)
, valuesThemT(valuesThemT)
, coordsMe{}
, coordsThem{}
{}
Index baseIndex(Index i) const {
return Index(coordsMe[i.me], coordsThem[i.them]);
}
Value at(Index i) const {
Index i2 = baseIndex(i);
return Value(
(*valuesMe)[i2.me * 3 + i2.them],
(*valuesThemT)[i2.me + i2.them * 3]
);
}
Game<2, 2> subgame22(int me0, int me1, int them0, int them1) const {
Game<2, 2> b(valuesMe, valuesThemT);
b.coordsMe[0] = coordsMe[me0];
b.coordsMe[1] = coordsMe[me1];
b.coordsThem[0] = coordsThem[them0];
b.coordsThem[1] = coordsThem[them1];
return b;
}
};
struct Strategy {
std::array<NumT, 3> probMe;
std::array<NumT, 3> probThem;
Value expectedValue;
bool valid;
Strategy(void)
: probMe{}
, probThem{}
, expectedValue()
, valid(false)
{}
void findBestMe(const Strategy &b) {
if(b.valid && (!valid || b.expectedValue.me > expectedValue.me)) {
*this = b;
}
}
};
template <int dimMe, int dimThem>
Strategy nash_pure(const Game<dimMe, dimThem> &g) {
Strategy s;
int choiceMe = -1;
int choiceThem = 0;
for(int me = 0; me < dimMe; ++ me) {
for(int them = 0; them < dimThem; ++ them) {
const Value &v = g.at(Index(me, them));
bool valid = true;
for(int me2 = 0; me2 < dimMe; ++ me2) {
if(g.at(Index(me2, them)).me > v.me) {
valid = false;
}
}
for(int them2 = 0; them2 < dimThem; ++ them2) {
if(g.at(Index(me, them2)).them > v.them) {
valid = false;
}
}
if(valid) {
if(choiceMe == -1 || v.me > s.expectedValue.me) {
s.expectedValue = v;
choiceMe = me;
choiceThem = them;
}
}
}
}
if(choiceMe != -1) {
Index iBase = g.baseIndex(Index(choiceMe, choiceThem));
s.probMe[iBase.me] = 1;
s.probThem[iBase.them] = 1;
s.valid = true;
}
return s;
}
Strategy nash_mixed(const Game<2, 2> &g) {
// P Q
// p a A b B
// q c C d D
Value A = g.at(Index(0, 0));
Value B = g.at(Index(0, 1));
Value C = g.at(Index(1, 0));
Value D = g.at(Index(1, 1));
// q = 1-p, Q = 1-P
// Pick p such that choice of P,Q is arbitrary
// p*A+(1-p)*C = p*B+(1-p)*D
// p*A+C-p*C = p*B+D-p*D
// p*(A+D-B-C) = D-C
// p = (D-C) / (A+D-B-C)
NumT p = (D.them - C.them) / (A.them + D.them - B.them - C.them);
// P*a+(1-P)*b = P*c+(1-P)*d
// P*a+b-P*b = P*c+d-P*d
// P*(a+d-b-c) = d-b
// P = (d-b) / (a+d-b-c)
NumT P = (D.me - B.me) / (A.me + D.me - B.me - C.me);
Strategy s;
if(p >= -EPSILON && p <= 1 + EPSILON && P >= -EPSILON && P <= 1 + EPSILON) {
if(p <= 0) {
p = 0;
} else if(p >= 1) {
p = 1;
}
if(P <= 0) {
P = 0;
} else if(P >= 1) {
P = 1;
}
Index iBase0 = g.baseIndex(Index(0, 0));
Index iBase1 = g.baseIndex(Index(1, 1));
s.probMe[iBase0.me] = p;
s.probMe[iBase1.me] = 1 - p;
s.probThem[iBase0.them] = P;
s.probThem[iBase1.them] = 1 - P;
s.expectedValue = Value(
P * A.me + (1 - P) * B.me,
p * A.them + (1 - p) * C.them
);
s.valid = true;
}
return s;
}
Strategy nash_mixed(const Game<3, 3> &g) {
// P Q R
// p a A b B c C
// q d D e E f F
// r g G h H i I
Value A = g.at(Index(0, 0));
Value B = g.at(Index(0, 1));
Value C = g.at(Index(0, 2));
Value D = g.at(Index(1, 0));
Value E = g.at(Index(1, 1));
Value F = g.at(Index(1, 2));
Value G = g.at(Index(2, 0));
Value H = g.at(Index(2, 1));
Value I = g.at(Index(2, 2));
// r = 1-p-q, R = 1-P-Q
// Pick p,q such that choice of P,Q,R is arbitrary
NumT q = ((
+ A.them * (I.them-H.them)
+ G.them * (B.them-C.them)
- B.them*I.them
+ H.them*C.them
) / (
(G.them+E.them-D.them-H.them) * (B.them+I.them-H.them-C.them) -
(H.them+F.them-E.them-I.them) * (A.them+H.them-G.them-B.them)
));
NumT p = (
((G.them+E.them-D.them-H.them) * q + (H.them-G.them)) /
(A.them+H.them-G.them-B.them)
);
NumT Q = ((
+ A.me * (I.me-F.me)
+ C.me * (D.me-G.me)
- D.me*I.me
+ F.me*G.me
) / (
(C.me+E.me-B.me-F.me) * (D.me+I.me-F.me-G.me) -
(F.me+H.me-E.me-I.me) * (A.me+F.me-C.me-D.me)
));
NumT P = (
((C.me+E.me-B.me-F.me) * Q + (F.me-C.me)) /
(A.me+F.me-C.me-D.me)
);
Strategy s;
if(
p >= -EPSILON && q >= -EPSILON && p + q <= 1 + EPSILON &&
P >= -EPSILON && Q >= -EPSILON && P + Q <= 1 + EPSILON
) {
if(p <= 0) { p = 0; }
if(q <= 0) { q = 0; }
if(P <= 0) { P = 0; }
if(Q <= 0) { Q = 0; }
if(p + q >= 1) {
if(p > q) {
p = 1 - q;
} else {
q = 1 - p;
}
}
if(P + Q >= 1) {
if(P > Q) {
P = 1 - Q;
} else {
Q = 1 - P;
}
}
Index iBase0 = g.baseIndex(Index(0, 0));
s.probMe[iBase0.me] = p;
s.probThem[iBase0.them] = P;
Index iBase1 = g.baseIndex(Index(1, 1));
s.probMe[iBase1.me] = q;
s.probThem[iBase1.them] = Q;
Index iBase2 = g.baseIndex(Index(2, 2));
s.probMe[iBase2.me] = 1 - p - q;
s.probThem[iBase2.them] = 1 - P - Q;
s.expectedValue = Value(
A.me * P + B.me * Q + C.me * (1 - P - Q),
A.them * p + D.them * q + G.them * (1 - p - q)
);
s.valid = true;
}
return s;
}
template <int dimMe, int dimThem>
Strategy nash_validate(Strategy &&s, const Game<dimMe, dimThem> &g, Index unused) {
if(!s.valid) {
return s;
}
NumT exp;
exp = 0;
for(int them = 0; them < dimThem; ++ them) {
exp += s.probThem[them] * g.at(Index(unused.me, them)).me;
}
if(exp > s.expectedValue.me) {
s.valid = false;
return s;
}
exp = 0;
for(int me = 0; me < dimMe; ++ me) {
exp += s.probMe[me] * g.at(Index(me, unused.them)).them;
}
if(exp > s.expectedValue.them) {
s.valid = false;
return s;
}
return s;
}
Strategy nash(const Game<2, 2> &g, bool verbose) {
Strategy s = nash_mixed(g);
s.findBestMe(nash_pure(g));
if(!s.valid && verbose) {
std::cerr << "No nash equilibrium found!" << std::endl;
}
return s;
}
Strategy nash(const Game<3, 3> &g, bool verbose) {
Strategy s = nash_mixed(g);
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 1, 2)), g, Index(0, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 0, 2)), g, Index(0, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(1, 2, 0, 1)), g, Index(0, 2)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 1, 2)), g, Index(1, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 0, 2)), g, Index(1, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 2, 0, 1)), g, Index(1, 2)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 1, 2)), g, Index(2, 0)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 0, 2)), g, Index(2, 1)));
s.findBestMe(nash_validate(nash_mixed(g.subgame22(0, 1, 0, 1)), g, Index(2, 2)));
s.findBestMe(nash_pure(g));
if(!s.valid && verbose) {
// theory says this should never happen, but fp precision makes it possible
std::cerr << "No nash equilibrium found!" << std::endl;
}
return s;
}
struct PlayerState {
int balls;
int ducks;
PlayerState(int balls, int ducks) : balls(balls), ducks(ducks) {}
PlayerState doReload(int maxBalls) const {
return PlayerState(std::min(balls + 1, maxBalls), ducks);
}
PlayerState doThrow(void) const {
return PlayerState(std::max(balls - 1, 0), ducks);
}
PlayerState doDuck(void) const {
return PlayerState(balls, std::max(ducks - 1, 0));
}
std::array<double,3> flail(int maxBalls) const {
// opponent has obvious win;
// try stuff at random and hope the opponent is bad
(void) ducks;
int options = 0;
if(balls > 0) {
++ options;
}
if(balls < maxBalls) {
++ options;
}
if(ducks > 0) {
++ options;
}
std::array<double,3> p{};
if(balls < balls) {
p[0] = 1.0f / options;
}
if(balls > 0) {
p[1] = 1.0f / options;
}
return p;
}
};
class GameStore {
protected:
const int balls;
const int ducks;
const std::size_t playerStates;
const std::size_t gameStates;
public:
static std::string filename(int turn) {
return "nashdata_" + std::to_string(turn) + ".dat";
}
GameStore(int maxBalls, int maxDucks)
: balls(maxBalls)
, ducks(maxDucks)
, playerStates((balls + 1) * (ducks + 1))
, gameStates(playerStates * playerStates)
{}
std::size_t playerIndex(const PlayerState &p) const {
return p.balls * (ducks + 1) + p.ducks;
}
std::size_t gameIndex(const PlayerState &me, const PlayerState &them) const {
return playerIndex(me) * playerStates + playerIndex(them);
}
std::size_t fileIndex(const PlayerState &me, const PlayerState &them) const {
return 2 + gameIndex(me, them) * 2;
}
PlayerState stateFromPlayerIndex(std::size_t i) const {
return PlayerState(i / (ducks + 1), i % (ducks + 1));
}
std::pair<PlayerState, PlayerState> stateFromGameIndex(std::size_t i) const {
return std::make_pair(
stateFromPlayerIndex(i / playerStates),
stateFromPlayerIndex(i % playerStates)
);
}
std::pair<PlayerState, PlayerState> stateFromFileIndex(std::size_t i) const {
return stateFromGameIndex((i - 2) / 2);
}
};
class Generator : public GameStore {
static char toDat(NumT v) {
int iv = int(v * 256.0);
return char(std::max(std::min(iv, 255), 0));
}
std::vector<Value> next;
public:
Generator(int maxBalls, int maxDucks)
: GameStore(maxBalls, maxDucks)
, next()
{}
const Value &nextGame(const PlayerState &me, const PlayerState &them) const {
return next[gameIndex(me, them)];
}
void make_probabilities(
std::array<NumT, 9> &g,
const PlayerState &me,
const PlayerState &them
) const {
const int RELOAD = 0;
const int THROW = 1;
const int DUCK = 2;
g[RELOAD * 3 + RELOAD] =
nextGame(me.doReload(balls), them.doReload(balls)).me;
g[RELOAD * 3 + THROW] =
(them.balls > 0) ? -1
: nextGame(me.doReload(balls), them.doThrow()).me;
g[RELOAD * 3 + DUCK] =
nextGame(me.doReload(balls), them.doDuck()).me;
g[THROW * 3 + RELOAD] =
(me.balls > 0) ? 1
: nextGame(me.doThrow(), them.doReload(balls)).me;
g[THROW * 3 + THROW] =
((me.balls > 0) == (them.balls > 0))
? nextGame(me.doThrow(), them.doThrow()).me
: (me.balls > 0) ? 1 : -1;
g[THROW * 3 + DUCK] =
(me.balls > 0 && them.ducks == 0) ? 1
: nextGame(me.doThrow(), them.doDuck()).me;
g[DUCK * 3 + RELOAD] =
nextGame(me.doDuck(), them.doReload(balls)).me;
g[DUCK * 3 + THROW] =
(them.balls > 0 && me.ducks == 0) ? -1
: nextGame(me.doDuck(), them.doThrow()).me;
g[DUCK * 3 + DUCK] =
nextGame(me.doDuck(), them.doDuck()).me;
}
Game<3, 3> make_game(const PlayerState &me, const PlayerState &them) const {
static std::array<NumT, 9> globalValuesMe;
static std::array<NumT, 9> globalValuesThemT;
#pragma omp threadprivate(globalValuesMe)
#pragma omp threadprivate(globalValuesThemT)
make_probabilities(globalValuesMe, me, them);
make_probabilities(globalValuesThemT, them, me);
Game<3, 3> g(&globalValuesMe, &globalValuesThemT);
for(int i = 0; i < 3; ++ i) {
g.coordsMe[i] = i;
g.coordsThem[i] = i;
}
return g;
}
Strategy solve(const PlayerState &me, const PlayerState &them, bool verbose) const {
if(me.balls > them.balls + them.ducks) { // obvious answer
Strategy s;
s.probMe[1] = 1;
s.probThem = them.flail(balls);
s.expectedValue = Value(1, -1);
return s;
} else if(them.balls > me.balls + me.ducks) { // uh-oh
Strategy s;
s.probThem[1] = 1;
s.probMe = me.flail(balls);
s.expectedValue = Value(-1, 1);
return s;
} else if(me.balls == 0 && them.balls == 0) { // obvious answer
Strategy s;
s.probMe[0] = 1;
s.probThem[0] = 1;
s.expectedValue = nextGame(me.doReload(balls), them.doReload(balls));
return s;
} else {
return nash(make_game(me, them), verbose);
}
}
void generate(int turns, bool saveAll, bool verbose) {
next.clear();
next.resize(gameStates);
std::vector<Value> current(gameStates);
std::vector<char> data(2 + gameStates * 2);
for(std::size_t turn = turns; (turn --) > 0;) {
if(verbose) {
std::cerr << "Generating for turn " << turn << "..." << std::endl;
}
NumT maxDiff = 0;
NumT msd = 0;
data[0] = balls;
data[1] = ducks;
#pragma omp parallel for reduction(+:msd), reduction(max:maxDiff)
for(std::size_t meBalls = 0; meBalls < balls + 1; ++ meBalls) {
for(std::size_t meDucks = 0; meDucks < ducks + 1; ++ meDucks) {
const PlayerState me(meBalls, meDucks);
for(std::size_t themBalls = 0; themBalls < balls + 1; ++ themBalls) {
for(std::size_t themDucks = 0; themDucks < ducks + 1; ++ themDucks) {
const PlayerState them(themBalls, themDucks);
const std::size_t p1 = gameIndex(me, them);
Strategy s = solve(me, them, verbose);
NumT diff;
data[2+p1*2 ] = toDat(s.probMe[0]);
data[2+p1*2+1] = toDat(s.probMe[0] + s.probMe[1]);
current[p1] = s.expectedValue;
diff = current[p1].me - next[p1].me;
msd += diff * diff;
maxDiff = std::max(maxDiff, std::abs(diff));
}
}
}
}
if(saveAll) {
std::ofstream fs(filename(turn).c_str(), std::ios_base::binary);
fs.write(&data[0], data.size());
fs.close();
}
if(verbose) {
std::cerr
<< "Expectations changed by at most " << maxDiff
<< " (RMSD: " << std::sqrt(msd / gameStates) << ")" << std::endl;
}
if(maxDiff < 0.0001f) {
if(verbose) {
std::cerr << "Expectations have converged. Stopping." << std::endl;
}
break;
}
std::swap(next, current);
}
// Always save turn 0 with the final converged expectations
std::ofstream fs(filename(0).c_str(), std::ios_base::binary);
fs.write(&data[0], data.size());
fs.close();
}
};
void open_file(std::ifstream &target, int turn, int maxDucks, int maxBalls) {
target.open(GameStore::filename(turn).c_str(), std::ios::binary);
if(target.is_open()) {
return;
}
target.open(GameStore::filename(0).c_str(), std::ios::binary);
if(target.is_open()) {
return;
}
Generator(maxBalls, maxDucks).generate(200, false, false);
target.open(GameStore::filename(0).c_str(), std::ios::binary);
}
int choose(int turn, const PlayerState &me, const PlayerState &them, int maxBalls) {
std::ifstream fs;
open_file(fs, turn, std::max(me.ducks, them.ducks), maxBalls);
unsigned char balls = fs.get();
unsigned char ducks = fs.get();
fs.seekg(GameStore(balls, ducks).fileIndex(me, them));
unsigned char p0 = fs.get();
unsigned char p1 = fs.get();
fs.close();
// only 1 random number per execution; no need to seed a PRNG
std::random_device rand;
int v = std::uniform_int_distribution<int>(0, 254)(rand);
if(v < p0) {
return 0;
} else if(v < p1) {
return 1;
} else {
return 2;
}
}
int main(int argc, const char *const *argv) {
if(argc == 4) { // maxTurns, maxBalls, maxDucks
Generator(atoi(argv[2]), atoi(argv[3])).generate(atoi(argv[1]), true, true);
return 0;
}
if(argc == 7) { // turn, meBalls, themBalls, meDucks, themDucks, maxBalls
std::cout << choose(
atoi(argv[1]),
PlayerState(atoi(argv[2]), atoi(argv[4])),
PlayerState(atoi(argv[3]), atoi(argv[5])),
atoi(argv[6])
) << std::endl;
return 0;
}
return 1;
}
Компилировать как C ++ 11 или лучше. Для производительности хорошо скомпилировать с поддержкой OpenMP (но это только для скорости; это не обязательно)
g++ -std=c++11 -fopenmp pain_in_the_nash.cpp -o pain_in_the_nash
Это использует равновесия Нэша, чтобы решить, что делать на каждом ходу, что означает, что в теории он всегда будет выигрывать или выигрывать в долгосрочной перспективе (в течение многих игр), независимо от того, какую стратегию использует противник. Будет ли это на практике, зависит от того, допустил ли я какие-либо ошибки в реализации. Однако, так как в этом соревновании KoTH есть только один раунд против каждого оппонента, он, вероятно, не будет очень хорошо в таблице лидеров.
Моя первоначальная идея состояла в том, чтобы иметь простую функцию оценки для каждого игрового состояния (например, каждый шар стоит + b, каждая утка + d), но это приводит к очевидным проблемам с определением того, какими должны быть эти оценки, и означает, что это не может действовать на уменьшение отдачи, собирая все больше и больше шаров и т. д. Таким образом, вместо этого будет проанализировано все игровое дерево , работающее в обратном направлении, начиная с хода 1000, и заполнены фактические оценки, основанные на том, как каждая игра может получиться.
В результате я понятия не имею, какую стратегию он использует, за исключением пары жестко закодированных «очевидных» действий (бросайте снежки, если у вас больше мячей, чем у вашего противника, шары + утки, и перезагружайте, если вы оба выбываете) снежки). Если кто-то хочет проанализировать набор данных, который он производит, я думаю, что есть интересное поведение, которое нужно обнаружить!
Тестирование против «Save One» показывает, что он действительно выигрывает в долгосрочной перспективе, но только с небольшим отрывом (514 побед, 486 поражений, 0 ничьих в первой партии из 1000 игр и 509 побед, 491 поражение, 0 рисует во втором).
Важный!
Это будет работать из коробки, но это не очень хорошая идея. На моем ноутбуке с умеренной спецификацией требуется около 9 минут, чтобы создать полное дерево игр. Но он сохранит окончательные вероятности в файле, как только они будут сгенерированы, и после этого каждый ход просто генерирует случайное число и сравнивает его с 2 байтами, так что это супер-быстро.
Чтобы сократить все это, просто загрузите этот файл (3,5 МБ) и поместите его в каталог с исполняемым файлом.
Или вы можете создать его самостоятельно, запустив:
./pain_in_the_nash 1000 50 25
Который будет сохранять один файл за ход, до схождения. Обратите внимание, что каждый файл имеет размер 3,5 МБ, и он будет сходиться на повороте 720 (то есть 280 файлов, ~ 1 ГБ), и, поскольку большинство игр не приближаются к повороту 720, файлы предварительной конвергенции имеют очень низкую важность.