Если вы хотите точно знать , сколько времени займет что-то, есть только одно решение: посмотрите на разборку!
Начиная с минимального кода:
void setup(){};
volatile uint16_t x;
void loop()
{
x = millis();
}
Этот код, скомпилированный и затем переданный, avr-objdump -S
производит документированную разборку. Вот интересные выдержки:
void loop()
производит:
000000a8 <loop>:
a8: 0e 94 a7 00 call 0x14e ; 0x14e <millis>
ac: 60 93 00 01 sts 0x0100, r22
b0: 70 93 01 01 sts 0x0101, r23
b4: 80 93 02 01 sts 0x0102, r24
b8: 90 93 03 01 sts 0x0103, r25
bc: 08 95 ret
Это вызов функции ( call
), четыре копии (которые копируют каждый из байтов в uint32_t
возвращаемом значении millis()
(обратите внимание, что документы arduino называют это a long
, но они некорректны, чтобы не указывать явно переменные размеры)), и, наконец, функция возврата.
call
требуется 4 такта, и каждый sts
требует 2 такта, поэтому у нас есть минимум 12 тактов только для служебных вызовов вызовов.
Теперь давайте посмотрим на разбор <millis>
функции, которая находится по адресу 0x14e
:
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
14e: 8f b7 in r24, 0x3f ; 63
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
150: f8 94 cli
m = timer0_millis;
152: 20 91 08 01 lds r18, 0x0108
156: 30 91 09 01 lds r19, 0x0109
15a: 40 91 0a 01 lds r20, 0x010A
15e: 50 91 0b 01 lds r21, 0x010B
SREG = oldSREG;
162: 8f bf out 0x3f, r24 ; 63
return m;
}
164: b9 01 movw r22, r18
166: ca 01 movw r24, r20
168: 08 95 ret
Как видите, millis()
функция довольно проста:
in
сохраняет настройки регистра прерываний (1 цикл)
cli
отключает прерывания (1 цикл)
lds
скопировать один из 4 байтов текущего значения счетчика милли во временный регистр (2 такта)
lds
Байт 2 (2 такта)
lds
Байт 3 (2 такта)
lds
Байт 4 (2 такта)
out
восстановить настройки прерывания (1 такт)
movw
регистры случайного воспроизведения (1 такт)
movw
и снова (1 такт)
ret
возврат из подпрограммы (4 цикла)
Таким образом, если мы сложим их все вместе, у нас будет в общей сложности 17 тактов в самой millis()
функции, плюс накладные расходы на вызов 12, что в общей сложности составит 29 тактов.
Предполагая тактовую частоту 16 МГц (большинство arduinos), каждый тактовый цикл составляет 1 / 16e6
секунды, или 0,0000000625 секунд, что составляет 62,5 наносекунды. 62,5 нс * 29 = 1,812 мкс.
Таким образом, общее время выполнения одного millis()
вызова на большинстве Arduinos составит 1,812 микросекунд .
AVR Сборка ссылки
Как примечание, здесь есть место для оптимизации! Если вы обновите unsigned long millis(){}
определение функции, чтобы быть inline unsigned long millis(){}
, вы удалили бы издержки вызова (за счет немного большего размера кода). Кроме того, похоже, что компилятор делает два ненужных шага (два movw
вызова, но я не слишком внимательно на это смотрю).
Действительно, с учетом накладных расходов вызова функции 5 инструкций, а фактические содержанием этого millis()
функции только 6 инструкции, я думаю , что millis()
функция должна быть действительно inline
по умолчанию, но Arduino кодового довольно плохо оптимизирован.
Вот полная разборка для всех, кто интересуется:
sketch_feb13a.cpp.elf: file format elf32-avr
Disassembly of section .text:
00000000 <__vectors>:
SREG = oldSREG;
return m;
}
unsigned long micros() {
0: 0c 94 34 00 jmp 0x68 ; 0x68 <__ctors_end>
4: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
8: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
10: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
14: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
18: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
1c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
20: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
24: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
28: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
2c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
30: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
34: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
38: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
3c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
40: 0c 94 5f 00 jmp 0xbe ; 0xbe <__vector_16>
44: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
48: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
4c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
50: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
54: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
58: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
5c: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
60: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
64: 0c 94 51 00 jmp 0xa2 ; 0xa2 <__bad_interrupt>
00000068 <__ctors_end>:
68: 11 24 eor r1, r1
6a: 1f be out 0x3f, r1 ; 63
6c: cf ef ldi r28, 0xFF ; 255
6e: d8 e0 ldi r29, 0x08 ; 8
70: de bf out 0x3e, r29 ; 62
72: cd bf out 0x3d, r28 ; 61
00000074 <__do_copy_data>:
74: 11 e0 ldi r17, 0x01 ; 1
76: a0 e0 ldi r26, 0x00 ; 0
78: b1 e0 ldi r27, 0x01 ; 1
7a: e2 e0 ldi r30, 0x02 ; 2
7c: f2 e0 ldi r31, 0x02 ; 2
7e: 02 c0 rjmp .+4 ; 0x84 <.do_copy_data_start>
00000080 <.do_copy_data_loop>:
80: 05 90 lpm r0, Z+
82: 0d 92 st X+, r0
00000084 <.do_copy_data_start>:
84: a0 30 cpi r26, 0x00 ; 0
86: b1 07 cpc r27, r17
88: d9 f7 brne .-10 ; 0x80 <.do_copy_data_loop>
0000008a <__do_clear_bss>:
8a: 11 e0 ldi r17, 0x01 ; 1
8c: a0 e0 ldi r26, 0x00 ; 0
8e: b1 e0 ldi r27, 0x01 ; 1
90: 01 c0 rjmp .+2 ; 0x94 <.do_clear_bss_start>
00000092 <.do_clear_bss_loop>:
92: 1d 92 st X+, r1
00000094 <.do_clear_bss_start>:
94: ad 30 cpi r26, 0x0D ; 13
96: b1 07 cpc r27, r17
98: e1 f7 brne .-8 ; 0x92 <.do_clear_bss_loop>
9a: 0e 94 f0 00 call 0x1e0 ; 0x1e0 <main>
9e: 0c 94 ff 00 jmp 0x1fe ; 0x1fe <_exit>
000000a2 <__bad_interrupt>:
a2: 0c 94 00 00 jmp 0 ; 0x0 <__vectors>
000000a6 <setup>:
a6: 08 95 ret
000000a8 <loop>:
a8: 0e 94 a7 00 call 0x14e ; 0x14e <millis>
ac: 60 93 00 01 sts 0x0100, r22
b0: 70 93 01 01 sts 0x0101, r23
b4: 80 93 02 01 sts 0x0102, r24
b8: 90 93 03 01 sts 0x0103, r25
bc: 08 95 ret
000000be <__vector_16>:
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
be: 1f 92 push r1
c0: 0f 92 push r0
c2: 0f b6 in r0, 0x3f ; 63
c4: 0f 92 push r0
c6: 11 24 eor r1, r1
c8: 2f 93 push r18
ca: 3f 93 push r19
cc: 8f 93 push r24
ce: 9f 93 push r25
d0: af 93 push r26
d2: bf 93 push r27
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
d4: 80 91 08 01 lds r24, 0x0108
d8: 90 91 09 01 lds r25, 0x0109
dc: a0 91 0a 01 lds r26, 0x010A
e0: b0 91 0b 01 lds r27, 0x010B
unsigned char f = timer0_fract;
e4: 30 91 0c 01 lds r19, 0x010C
m += MILLIS_INC;
e8: 01 96 adiw r24, 0x01 ; 1
ea: a1 1d adc r26, r1
ec: b1 1d adc r27, r1
f += FRACT_INC;
ee: 23 2f mov r18, r19
f0: 2d 5f subi r18, 0xFD ; 253
if (f >= FRACT_MAX) {
f2: 2d 37 cpi r18, 0x7D ; 125
f4: 20 f0 brcs .+8 ; 0xfe <__vector_16+0x40>
f -= FRACT_MAX;
f6: 2d 57 subi r18, 0x7D ; 125
m += 1;
f8: 01 96 adiw r24, 0x01 ; 1
fa: a1 1d adc r26, r1
fc: b1 1d adc r27, r1
}
timer0_fract = f;
fe: 20 93 0c 01 sts 0x010C, r18
timer0_millis = m;
102: 80 93 08 01 sts 0x0108, r24
106: 90 93 09 01 sts 0x0109, r25
10a: a0 93 0a 01 sts 0x010A, r26
10e: b0 93 0b 01 sts 0x010B, r27
timer0_overflow_count++;
112: 80 91 04 01 lds r24, 0x0104
116: 90 91 05 01 lds r25, 0x0105
11a: a0 91 06 01 lds r26, 0x0106
11e: b0 91 07 01 lds r27, 0x0107
122: 01 96 adiw r24, 0x01 ; 1
124: a1 1d adc r26, r1
126: b1 1d adc r27, r1
128: 80 93 04 01 sts 0x0104, r24
12c: 90 93 05 01 sts 0x0105, r25
130: a0 93 06 01 sts 0x0106, r26
134: b0 93 07 01 sts 0x0107, r27
}
138: bf 91 pop r27
13a: af 91 pop r26
13c: 9f 91 pop r25
13e: 8f 91 pop r24
140: 3f 91 pop r19
142: 2f 91 pop r18
144: 0f 90 pop r0
146: 0f be out 0x3f, r0 ; 63
148: 0f 90 pop r0
14a: 1f 90 pop r1
14c: 18 95 reti
0000014e <millis>:
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
14e: 8f b7 in r24, 0x3f ; 63
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
150: f8 94 cli
m = timer0_millis;
152: 20 91 08 01 lds r18, 0x0108
156: 30 91 09 01 lds r19, 0x0109
15a: 40 91 0a 01 lds r20, 0x010A
15e: 50 91 0b 01 lds r21, 0x010B
SREG = oldSREG;
162: 8f bf out 0x3f, r24 ; 63
return m;
}
164: b9 01 movw r22, r18
166: ca 01 movw r24, r20
168: 08 95 ret
0000016a <init>:
void init()
{
// this needs to be called before setup() or some functions won't
// work there
sei();
16a: 78 94 sei
// on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
sbi(TCCR0A, WGM01);
16c: 84 b5 in r24, 0x24 ; 36
16e: 82 60 ori r24, 0x02 ; 2
170: 84 bd out 0x24, r24 ; 36
sbi(TCCR0A, WGM00);
172: 84 b5 in r24, 0x24 ; 36
174: 81 60 ori r24, 0x01 ; 1
176: 84 bd out 0x24, r24 ; 36
// this combination is for the standard atmega8
sbi(TCCR0, CS01);
sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
178: 85 b5 in r24, 0x25 ; 37
17a: 82 60 ori r24, 0x02 ; 2
17c: 85 bd out 0x25, r24 ; 37
sbi(TCCR0B, CS00);
17e: 85 b5 in r24, 0x25 ; 37
180: 81 60 ori r24, 0x01 ; 1
182: 85 bd out 0x25, r24 ; 37
// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
sbi(TIMSK0, TOIE0);
184: ee e6 ldi r30, 0x6E ; 110
186: f0 e0 ldi r31, 0x00 ; 0
188: 80 81 ld r24, Z
18a: 81 60 ori r24, 0x01 ; 1
18c: 80 83 st Z, r24
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
TCCR1B = 0;
18e: e1 e8 ldi r30, 0x81 ; 129
190: f0 e0 ldi r31, 0x00 ; 0
192: 10 82 st Z, r1
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
194: 80 81 ld r24, Z
196: 82 60 ori r24, 0x02 ; 2
198: 80 83 st Z, r24
#if F_CPU >= 8000000L
sbi(TCCR1B, CS10);
19a: 80 81 ld r24, Z
19c: 81 60 ori r24, 0x01 ; 1
19e: 80 83 st Z, r24
sbi(TCCR1, CS10);
#endif
#endif
// put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
sbi(TCCR1A, WGM10);
1a0: e0 e8 ldi r30, 0x80 ; 128
1a2: f0 e0 ldi r31, 0x00 ; 0
1a4: 80 81 ld r24, Z
1a6: 81 60 ori r24, 0x01 ; 1
1a8: 80 83 st Z, r24
// set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
sbi(TCCR2B, CS22);
1aa: e1 eb ldi r30, 0xB1 ; 177
1ac: f0 e0 ldi r31, 0x00 ; 0
1ae: 80 81 ld r24, Z
1b0: 84 60 ori r24, 0x04 ; 4
1b2: 80 83 st Z, r24
// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
sbi(TCCR2A, WGM20);
1b4: e0 eb ldi r30, 0xB0 ; 176
1b6: f0 e0 ldi r31, 0x00 ; 0
1b8: 80 81 ld r24, Z
1ba: 81 60 ori r24, 0x01 ; 1
1bc: 80 83 st Z, r24
#if defined(ADCSRA)
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
// this code should use F_CPU to determine the prescale factor.
sbi(ADCSRA, ADPS2);
1be: ea e7 ldi r30, 0x7A ; 122
1c0: f0 e0 ldi r31, 0x00 ; 0
1c2: 80 81 ld r24, Z
1c4: 84 60 ori r24, 0x04 ; 4
1c6: 80 83 st Z, r24
sbi(ADCSRA, ADPS1);
1c8: 80 81 ld r24, Z
1ca: 82 60 ori r24, 0x02 ; 2
1cc: 80 83 st Z, r24
sbi(ADCSRA, ADPS0);
1ce: 80 81 ld r24, Z
1d0: 81 60 ori r24, 0x01 ; 1
1d2: 80 83 st Z, r24
// enable a2d conversions
sbi(ADCSRA, ADEN);
1d4: 80 81 ld r24, Z
1d6: 80 68 ori r24, 0x80 ; 128
1d8: 80 83 st Z, r24
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
#if defined(UCSRB)
UCSRB = 0;
#elif defined(UCSR0B)
UCSR0B = 0;
1da: 10 92 c1 00 sts 0x00C1, r1
#endif
}
1de: 08 95 ret
000001e0 <main>:
#include <Arduino.h>
int main(void)
1e0: cf 93 push r28
1e2: df 93 push r29
{
init();
1e4: 0e 94 b5 00 call 0x16a ; 0x16a <init>
#if defined(USBCON)
USBDevice.attach();
#endif
setup();
1e8: 0e 94 53 00 call 0xa6 ; 0xa6 <setup>
for (;;) {
loop();
if (serialEventRun) serialEventRun();
1ec: c0 e0 ldi r28, 0x00 ; 0
1ee: d0 e0 ldi r29, 0x00 ; 0
#endif
setup();
for (;;) {
loop();
1f0: 0e 94 54 00 call 0xa8 ; 0xa8 <loop>
if (serialEventRun) serialEventRun();
1f4: 20 97 sbiw r28, 0x00 ; 0
1f6: e1 f3 breq .-8 ; 0x1f0 <main+0x10>
1f8: 0e 94 00 00 call 0 ; 0x0 <__vectors>
1fc: f9 cf rjmp .-14 ; 0x1f0 <main+0x10>
000001fe <_exit>:
1fe: f8 94 cli
00000200 <__stop_program>:
200: ff cf rjmp .-2 ; 0x200 <__stop_program>